PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o660–o661.
Published online 2009 March 6. doi:  10.1107/S1600536809006989
PMCID: PMC2969064

4-[1-(4-Cyano­benz­yl)-1H-benzimidazol-2-yl]benzonitrile

Abstract

In the title compound, C22H14N4, a new substituted benzimidazole, three inter­molecular C—H(...)N inter­actions link neighbouring mol­ecules into different dimers with R 2 2(12), R 2 2(8) and R 2 2(24) ring motifs. A fourth C—H(...)N inter­action links neighbouring mol­ecules along the c axis. There is also a short inter­molecular contact between the azomethine (C=N) segment of the benzimidazole ring and one of the C atoms of a neighbouring benzene ring [N(...)C = 3.191 (5), C(...)C = 3.364 (6) Å], which links the mol­ecules along the a axis. The two cyano­benzene rings are almost perpendicular to each other, with an inter­planar angle of 87.70 (7)°. The dihedral angles between the mean planes of the benzimidazole ring and the two outer benzene rings are 36.27 (16) and 86.70 (16)°. In the crystal structure, mol­ecules are stacked down the a axis with centroid–centroid distances of 3.906 (2)–3.912 (2) Å and inter­planar distances of 3.5040 (17) and 3.6235 (17) Å.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For benzimidazole chemistry, reaction mechanisms and their bioactivity, see, for example: Latif et al. (1983 [triangle]); Craigo et al. (1999 [triangle]); Gudmundsson et al. (2000 [triangle]); Trivedi et al. (2006); Kim et al. (1996 [triangle]); Ramla et al. (2006 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o660-scheme1.jpg

Experimental

Crystal data

  • C22H14N4
  • M r = 334.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o660-efi1.jpg
  • a = 5.0553 (4) Å
  • b = 17.3437 (10) Å
  • c = 19.6339 (14) Å
  • β = 97.653 (5)°
  • V = 1706.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.45 × 0.09 × 0.04 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.965, T max = 0.997
  • 15641 measured reflections
  • 2906 independent reflections
  • 1490 reflections with I > 2σ(I)
  • R int = 0.153

Refinement

  • R[F 2 > 2σ(F 2)] = 0.079
  • wR(F 2) = 0.169
  • S = 1.07
  • 2906 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006989/zl2173sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006989/zl2173Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Benzimidazoles are used widely in biological applications and as pharmaceutical agents (Craigo et al., 1999; Gudmundsson et al., 2000; Trivedi et al., 2006). They are also used as topoisomerase I inhibitors (Kim et al., 1996) and for antitumor activity (Ramla et al., 2006). Due to these important applications, many synthetic routes towards benzimidazoles have been developed. They can, for example, be synthesized by the reaction of phenolic aldehydes with o-phenylenediamine (Latif et al., 1983). Based on this route the title compound was synthesized and its crystal structure is reported here.

The title compound, Fig.1, comprises a single molecule in the asymmetric unit. Three intermolecular C—H···N interactions link neighbouring molecules into different dimers with R22(12), R22(8) and R22(24) ring motifs (Bernstein et al., 1995). A fourth C—H···N interaction links neighbouring molecules along the c axis. The two cyanobenzene rings are almost perpendicular to each other, with an interplanar angle of 87.70 (7)°. The dihedral angles between the the mean planes of the benzimidazole ring and the two outer benzene rings are 36.27 (16) and 86.70 (16)°. There is also a short intermolecular contact between the azomethine (C1═N1) segment of the benzimidazole ring and one of the carbon atoms (C13) of the neighbouring benzene rings which links the molecules along the a axis (N1···C13v = 3.191 (5) C1···C13v = 3.364 (6), symmetry code: (v) x-1, y, z). In the crystal structure, the molecules are stacked down the a axis with centroid to centroid distances of 3.906 (2)–3.912 (2) Å and interplanar distances of 3.5040 (17) and 3.6235 (17) Å [Cg1···Cg2vi = 3.906 (2); (vi) 1 + x, y, z and Cg1···Cg3vii = 3.912 (2) Å; (vii) -1 + x, y, z: Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6/N2/C7, C1–C6, and C8–C13 benzene rings] (Fig. 2).

Experimental

An ethanolic solution (50 ml) of 4-cyanobenzaldehyde (2 mmol, 263 mg) was added to 1,2-phenylenediamine (1 mmol, 217 mg). The mixture was refluxed for 2 h, and cooled to room temperature. The resulting colourless powder was filtered, washed with cooled ethanol and dried in vacuo. Single crystals suitable for X-ray diffraction were obtained from an ethanol solution at room temperature.

Refinement

All hydrogen atoms were positioned gemetrically and refined in a riding model approximation with C—H = 0.93–0.97 Å and Uiso (H) = 1.2 Ueq (C).

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of the title compound, viewed down the a-axis showing infinite stacks of molecules along the a-axis and also linking of molecules through C—H···N interactions along the c-axis. Intermolecular hydrogen ...

Crystal data

C22H14N4F(000) = 696
Mr = 334.37Dx = 1.302 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3931 reflections
a = 5.0553 (4) Åθ = 2.4–30.2°
b = 17.3437 (10) ŵ = 0.08 mm1
c = 19.6339 (14) ÅT = 100 K
β = 97.653 (5)°Needle, colourless
V = 1706.1 (2) Å30.45 × 0.09 × 0.04 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2906 independent reflections
Radiation source: fine-focus sealed tube1490 reflections with I > 2σ(I)
graphiteRint = 0.153
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −6→6
Tmin = 0.965, Tmax = 0.997k = −20→20
15641 measured reflectionsl = −23→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.169w = 1/[σ2(Fo2) + (0.0473P)2 + 1.9898P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2906 reflectionsΔρmax = 0.26 e Å3
236 parametersΔρmin = −0.35 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0124 (18)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.7041 (7)0.41520 (18)0.10705 (18)0.0222 (9)
N20.8001 (6)0.29462 (17)0.14467 (17)0.0196 (9)
N31.5730 (8)0.3343 (2)−0.1704 (2)0.0366 (11)
N40.1768 (8)−0.0990 (2)0.05749 (19)0.0328 (10)
C10.5702 (8)0.3997 (2)0.1633 (2)0.0205 (10)
C20.3933 (8)0.4456 (2)0.1943 (2)0.0250 (11)
H2A0.35100.49530.17870.030*
C30.2841 (8)0.4148 (2)0.2487 (2)0.0271 (11)
H3A0.16390.44410.26970.033*
C40.3485 (8)0.3408 (2)0.2733 (2)0.0272 (11)
H4A0.27190.32230.31050.033*
C50.5240 (8)0.2944 (2)0.2434 (2)0.0240 (11)
H5A0.56810.24510.25970.029*
C60.6310 (8)0.3255 (2)0.1876 (2)0.0197 (10)
C70.8349 (8)0.3516 (2)0.0971 (2)0.0196 (10)
C80.9937 (8)0.3425 (2)0.0400 (2)0.0183 (10)
C91.0085 (8)0.2747 (2)0.0032 (2)0.0206 (11)
H9A0.91930.23100.01530.025*
C101.1554 (8)0.2718 (2)−0.0515 (2)0.0248 (11)
H10A1.16560.2262−0.07580.030*
C111.2870 (8)0.3372 (2)−0.0697 (2)0.0207 (11)
C121.2703 (8)0.4059 (2)−0.0344 (2)0.0228 (11)
H12A1.35610.4499−0.04730.027*
C131.1248 (8)0.4079 (2)0.0200 (2)0.0229 (11)
H13A1.11350.45380.04390.027*
C140.9363 (8)0.2212 (2)0.1570 (2)0.0221 (11)
H14A0.99870.21670.20570.026*
H14B1.09180.22090.13290.026*
C150.7667 (8)0.1513 (2)0.1346 (2)0.0193 (10)
C160.8439 (8)0.0795 (2)0.1615 (2)0.0232 (11)
H16A0.99620.07510.19350.028*
C170.6958 (8)0.0145 (2)0.1410 (2)0.0256 (11)
H17A0.7492−0.03360.15890.031*
C180.4669 (8)0.0212 (2)0.0936 (2)0.0217 (11)
C190.3883 (8)0.0931 (2)0.0667 (2)0.0228 (11)
H19A0.23490.09780.03510.027*
C200.5388 (8)0.1572 (2)0.0871 (2)0.0208 (10)
H20A0.48690.20520.06870.025*
C211.4437 (9)0.3350 (2)−0.1261 (3)0.0281 (12)
C220.3071 (9)−0.0458 (2)0.0734 (2)0.0256 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.028 (2)0.016 (2)0.023 (2)0.0017 (16)0.0025 (19)−0.0006 (16)
N20.026 (2)0.0127 (19)0.019 (2)0.0003 (15)0.0024 (18)−0.0026 (16)
N30.043 (3)0.031 (2)0.036 (3)−0.0030 (19)0.006 (2)−0.001 (2)
N40.045 (3)0.027 (2)0.027 (2)−0.006 (2)0.006 (2)−0.0006 (18)
C10.026 (2)0.016 (3)0.019 (3)−0.0022 (19)0.003 (2)−0.003 (2)
C20.029 (3)0.015 (2)0.030 (3)0.003 (2)0.000 (2)−0.006 (2)
C30.025 (2)0.031 (3)0.027 (3)−0.004 (2)0.007 (2)−0.006 (2)
C40.032 (3)0.026 (3)0.026 (3)−0.008 (2)0.008 (2)−0.006 (2)
C50.028 (3)0.019 (2)0.024 (3)−0.003 (2)−0.002 (2)−0.003 (2)
C60.024 (2)0.016 (2)0.018 (3)−0.0035 (19)0.001 (2)−0.005 (2)
C70.021 (2)0.017 (2)0.019 (3)−0.0054 (19)−0.005 (2)0.000 (2)
C80.021 (2)0.015 (2)0.019 (3)0.0019 (18)0.001 (2)0.003 (2)
C90.023 (2)0.016 (3)0.023 (3)−0.0008 (18)0.003 (2)0.004 (2)
C100.032 (3)0.022 (3)0.019 (3)0.002 (2)−0.001 (2)−0.001 (2)
C110.022 (2)0.021 (3)0.020 (3)0.0000 (19)0.004 (2)0.005 (2)
C120.031 (3)0.017 (3)0.021 (3)−0.0037 (19)0.004 (2)−0.002 (2)
C130.031 (3)0.015 (2)0.022 (3)0.002 (2)0.002 (2)−0.002 (2)
C140.023 (2)0.021 (2)0.023 (3)0.0009 (19)0.003 (2)0.0011 (19)
C150.023 (3)0.016 (2)0.019 (3)0.0013 (18)0.005 (2)−0.0030 (19)
C160.026 (2)0.020 (2)0.024 (3)−0.001 (2)0.004 (2)0.001 (2)
C170.026 (3)0.019 (2)0.032 (3)0.003 (2)0.004 (3)0.001 (2)
C180.026 (3)0.017 (2)0.024 (3)−0.0035 (19)0.010 (2)−0.004 (2)
C190.021 (2)0.024 (3)0.022 (3)0.000 (2)0.001 (2)0.001 (2)
C200.027 (3)0.015 (2)0.021 (3)0.0006 (19)0.004 (2)−0.0002 (19)
C210.035 (3)0.019 (3)0.030 (3)−0.003 (2)0.003 (3)0.000 (2)
C220.033 (3)0.023 (3)0.022 (3)−0.001 (2)0.007 (2)0.002 (2)

Geometric parameters (Å, °)

N1—C71.314 (5)C10—C111.385 (5)
N1—C11.397 (5)C10—H10A0.9300
N2—C61.385 (5)C11—C121.387 (5)
N2—C71.387 (5)C11—C211.446 (6)
N2—C141.453 (5)C12—C131.376 (5)
N3—C211.155 (5)C12—H12A0.9300
N4—C221.152 (5)C13—H13A0.9300
C1—C61.391 (5)C14—C151.515 (5)
C1—C21.397 (5)C14—H14A0.9700
C2—C31.375 (6)C14—H14B0.9700
C2—H2A0.9300C15—C201.386 (5)
C3—C41.393 (6)C15—C161.388 (5)
C3—H3A0.9300C16—C171.384 (5)
C4—C51.385 (6)C16—H16A0.9300
C4—H4A0.9300C17—C181.390 (5)
C5—C61.394 (6)C17—H17A0.9300
C5—H5A0.9300C18—C191.391 (5)
C7—C81.472 (6)C18—C221.440 (6)
C8—C91.387 (5)C19—C201.377 (5)
C8—C131.397 (5)C19—H19A0.9300
C9—C101.385 (5)C20—H20A0.9300
C9—H9A0.9300
C7—N1—C1105.2 (3)C10—C11—C21120.6 (4)
C6—N2—C7106.1 (3)C12—C11—C21118.8 (4)
C6—N2—C14123.7 (3)C13—C12—C11119.0 (4)
C7—N2—C14129.6 (3)C13—C12—H12A120.5
C6—C1—C2120.2 (4)C11—C12—H12A120.5
C6—C1—N1109.9 (4)C12—C13—C8121.3 (4)
C2—C1—N1129.8 (4)C12—C13—H13A119.3
C3—C2—C1117.6 (4)C8—C13—H13A119.3
C3—C2—H2A121.2N2—C14—C15114.6 (3)
C1—C2—H2A121.2N2—C14—H14A108.6
C2—C3—C4121.8 (4)C15—C14—H14A108.6
C2—C3—H3A119.1N2—C14—H14B108.6
C4—C3—H3A119.1C15—C14—H14B108.6
C5—C4—C3121.5 (4)H14A—C14—H14B107.6
C5—C4—H4A119.3C20—C15—C16119.3 (4)
C3—C4—H4A119.3C20—C15—C14121.6 (3)
C4—C5—C6116.4 (4)C16—C15—C14119.2 (4)
C4—C5—H5A121.8C17—C16—C15120.4 (4)
C6—C5—H5A121.8C17—C16—H16A119.8
N2—C6—C1106.0 (4)C15—C16—H16A119.8
N2—C6—C5131.6 (4)C16—C17—C18119.7 (4)
C1—C6—C5122.4 (4)C16—C17—H17A120.1
N1—C7—N2112.7 (4)C18—C17—H17A120.1
N1—C7—C8122.6 (4)C17—C18—C19120.0 (4)
N2—C7—C8124.6 (4)C17—C18—C22120.2 (4)
C9—C8—C13118.8 (4)C19—C18—C22119.8 (4)
C9—C8—C7124.0 (4)C20—C19—C18119.6 (4)
C13—C8—C7117.1 (4)C20—C19—H19A120.2
C10—C9—C8120.4 (4)C18—C19—H19A120.2
C10—C9—H9A119.8C19—C20—C15120.9 (4)
C8—C9—H9A119.8C19—C20—H20A119.6
C9—C10—C11119.8 (4)C15—C20—H20A119.6
C9—C10—H10A120.1N3—C21—C11178.5 (5)
C11—C10—H10A120.1N4—C22—C18179.2 (5)
C10—C11—C12120.7 (4)
C7—N1—C1—C61.5 (4)N2—C7—C8—C13−147.4 (4)
C7—N1—C1—C2−177.1 (4)C13—C8—C9—C101.3 (6)
C6—C1—C2—C3−0.1 (6)C7—C8—C9—C10177.7 (4)
N1—C1—C2—C3178.4 (4)C8—C9—C10—C11−0.3 (6)
C1—C2—C3—C40.9 (6)C9—C10—C11—C12−0.9 (6)
C2—C3—C4—C5−0.7 (6)C9—C10—C11—C21179.3 (4)
C3—C4—C5—C6−0.3 (6)C10—C11—C12—C131.2 (6)
C7—N2—C6—C10.4 (4)C21—C11—C12—C13−179.0 (4)
C14—N2—C6—C1172.4 (3)C11—C12—C13—C8−0.2 (6)
C7—N2—C6—C5178.7 (4)C9—C8—C13—C12−1.0 (6)
C14—N2—C6—C5−9.3 (6)C7—C8—C13—C12−177.7 (4)
C2—C1—C6—N2177.5 (3)C6—N2—C14—C1581.2 (5)
N1—C1—C6—N2−1.2 (4)C7—N2—C14—C15−108.9 (4)
C2—C1—C6—C5−1.0 (6)N2—C14—C15—C2020.2 (5)
N1—C1—C6—C5−179.7 (4)N2—C14—C15—C16−160.9 (4)
C4—C5—C6—N2−177.0 (4)C20—C15—C16—C170.2 (6)
C4—C5—C6—C11.1 (6)C14—C15—C16—C17−178.7 (4)
C1—N1—C7—N2−1.3 (4)C15—C16—C17—C18−0.6 (6)
C1—N1—C7—C8177.1 (3)C16—C17—C18—C190.4 (6)
C6—N2—C7—N10.5 (4)C16—C17—C18—C22−178.2 (4)
C14—N2—C7—N1−170.8 (4)C17—C18—C19—C200.2 (6)
C6—N2—C7—C8−177.8 (4)C22—C18—C19—C20178.7 (4)
C14—N2—C7—C810.9 (6)C18—C19—C20—C15−0.6 (6)
N1—C7—C8—C9−142.1 (4)C16—C15—C20—C190.3 (6)
N2—C7—C8—C936.1 (6)C14—C15—C20—C19179.3 (4)
N1—C7—C8—C1334.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12A···N1i0.932.623.425 (5)146
C19—H19A···N4ii0.932.573.502 (6)175
C9—H9A···N4iii0.932.713.361 (5)128
C14—H14A···N3iv0.972.573.502 (5)162

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x, −y, −z; (iii) −x+1, −y, −z; (iv) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2173).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Craigo, W. A., LeSueur, B. W. & Skibo, E. B. (1999). J. Med. Chem.42, 3324–3333. [PubMed]
  • Gudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem.43, 2464–2472. [PubMed]
  • Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & LaVoie, E. J. (1996). J. Med. Chem.39, 992–998. [PubMed]
  • Latif, N., Mishriky, N. & F. M. Assad (1983). Recl Trav. Chim. Pays-Bas, 102, 73–77.
  • Ramla, M. M., Omer, M. A., El-Khamry, A. M. & El-Diwani, H. I. (2006). Bioorg. Med. Chem.14, 7324–7332. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Trivedi, R., De, S. K. & Gibbs, R. A. (2006). J. Mol. Catal. A Chem.245, 8–11.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography