PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m391.
Published online 2009 March 11. doi:  10.1107/S1600536809007971
PMCID: PMC2969061

Bis(η5-penta­methyl­cyclo­penta­dien­yl)cobalt(II)

Abstract

The crystal structure of the title compound, deca­methyl­cobaltocene, [Co(C10H15)2], has been determined. High-quality single crystals were grown from a cold saturated hexa­methyl­disiloxane solution. The structure is related to the manganese and iron analogs. The molecule has D 5d symmetry, with the Co atom in a crystallographic 2/m position. The cobalt–centroid(C5) distance is 1.71Å and the centroid(C5)–Co–centroid(C5) angle is 180°, by symmetry.

Related literature

For the synthesis of the title compound and its electrochemical and magnetic properties, see: Robbins et al. (1982 [triangle]). For its formal potential and use as a reducing agent, see: Connelly & Geiger (1996 [triangle]). For the isotypic manganese and iron structures, see: Struchkov et al. (1978 [triangle]); Freyburg et al. (1979 [triangle]); Augart et al. (1991 [triangle]); Arrais et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m391-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H15)2]
  • M r = 329.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m391-efi1.jpg
  • a = 15.0848 (16) Å
  • b = 11.5031 (12) Å
  • c = 10.0105 (10) Å
  • V = 1737.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.98 mm−1
  • T = 100 K
  • 0.28 × 0.28 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a [triangle]) T min = 0.771, T max = 0.875
  • 19672 measured reflections
  • 2386 independent reflections
  • 1903 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.089
  • S = 1.07
  • 2386 reflections
  • 84 parameters
  • All H-atom parameters refined
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007971/sj2590sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007971/sj2590Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The structure of (I) has been conspicuously absent from the literature, despite its being a widely used reducing agent (Connelly & Geiger, 1996). Robbins and co-workers referred to a structural determination in 1982 (Robbins et al., 1982), specifically its D5d symmetry and its similarity to the manganese analog. However, no structural data were presented. Attempts to grow single crystals from toluene and hexane, the latter from which Robbins reported having grown crystals, resulted in very poor quality specimens that were unsuitable for X-ray diffraction experiments. A cold (-38 ° C) saturated hexamethyldisiloxane solution of (I) afforded excellent crystals that resulted in a high quality structural determination.

The structure is isomorphous to that of decamethylferrocene (refcodes DMFERR, Struchkov et al., 1978, DMFERR01, Freyburg et al., 1979, DMFERR02, Arrais et al., 2003) and the low temperature polymorph of decamethylmanganocene (refcodes DMCPMN01 and DMCPMN02, Augart et al., 1991), for which the metal atoms are in crystallographic 2/m positions.

Experimental

All operations were performed under an inert atmosphere (dinitrogen). Hexamethyldisiloxane was stirred over CaH2 and vacuum transferred from sodium benzophenone ketyl. (I) was purchased from Sigma-Aldrich and used as is. Hexamethyldisiloxane (1 ml) was added to (I) (10 mg, 30 µmol), most of which dissolved over the course of a few hours at room temperature. After filtration through Celite, the filtrate was stored at -38 °C, resulting in dark yellow-brown crystals of (I) after a few hours.

Refinement

Hydrogen atoms were found from the difference Fourier map and refined independently from their respective carbon atoms with individual isotropic displacement parameters.

Figures

Fig. 1.
A displacement ellipsoid (50% probability) drawing of (I). The cobalt atom is in a crystallographic 2/m position.

Crystal data

[Co(C10H15)2]F(000) = 708
Mr = 329.37Dx = 1.259 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 4000 reflections
a = 15.0848 (16) Åθ = 3.0–37.5°
b = 11.5031 (12) ŵ = 0.98 mm1
c = 10.0105 (10) ÅT = 100 K
V = 1737.0 (3) Å3Block, dark yellow-brown
Z = 40.28 × 0.28 × 0.14 mm

Data collection

Bruker APEXII CCD diffractometer2386 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scansθmax = 38.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)h = −25→25
Tmin = 0.771, Tmax = 0.875k = −19→19
19672 measured reflectionsl = −16→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089All H-atom parameters refined
S = 1.07w = 1/[σ2(Fo2) + (0.0525P)2 + 0.2743P] where P = (Fo2 + 2Fc2)/3
2386 reflections(Δ/σ)max < 0.001
84 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = −0.74 e Å3

Special details

Experimental. The crystal was examined under N2 and affixed to the end of a glass capillary with viscous oil, which protected the crystal during transfer to the cold stream.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.00000.00000.01533 (7)
C10.0000−0.17732 (10)0.04617 (12)0.0228 (2)
C2−0.07677 (6)−0.12416 (7)0.10364 (8)0.02149 (15)
C3−0.04749 (5)−0.03551 (7)0.19244 (8)0.01843 (13)
C40.0000−0.27361 (12)−0.05429 (14)0.0348 (3)
H4A0.0000−0.352 (3)−0.013 (2)0.045 (8)*
H4B−0.0486 (10)−0.2711 (18)−0.1133 (16)0.063 (5)*
C5−0.17089 (8)−0.15651 (11)0.07606 (12)0.0340 (2)
H5A−0.1798 (16)−0.184 (2)−0.0134 (18)0.053 (6)*
H5B−0.2119 (12)−0.0926 (16)0.0778 (19)0.059 (5)*
H5C−0.1896 (11)−0.2189 (15)0.1358 (16)0.047 (4)*
C6−0.10544 (7)0.04079 (10)0.27607 (9)0.02731 (18)
H6A−0.1134 (15)0.0057 (13)0.360 (3)0.045 (6)*
H6B−0.1638 (11)0.0562 (13)0.2287 (15)0.039 (4)*
H6C−0.0774 (11)0.1158 (14)0.2912 (14)0.037 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.01811 (10)0.01380 (9)0.01409 (9)0.0000.000−0.00032 (6)
C10.0353 (6)0.0161 (4)0.0170 (4)0.0000.000−0.0004 (4)
C20.0245 (3)0.0202 (3)0.0198 (3)−0.0054 (3)−0.0013 (3)0.0016 (3)
C30.0205 (3)0.0180 (3)0.0168 (3)0.0002 (3)0.0014 (2)0.0006 (2)
C40.0653 (11)0.0183 (5)0.0206 (5)0.0000.000−0.0029 (4)
C50.0290 (4)0.0371 (5)0.0359 (5)−0.0147 (4)−0.0069 (4)0.0063 (4)
C60.0293 (4)0.0292 (4)0.0234 (4)0.0056 (4)0.0068 (3)−0.0005 (3)

Geometric parameters (Å, °)

Co1—C1i2.0914 (12)C2—C31.4231 (12)
Co1—C12.0914 (12)C2—C51.4935 (14)
Co1—C3ii2.0955 (8)C3—C3ii1.4328 (17)
Co1—C32.0956 (8)C3—C61.4950 (13)
Co1—C3i2.0956 (8)C4—H4A0.99 (3)
Co1—C3iii2.0956 (8)C4—H4B0.942 (16)
Co1—C2iii2.1113 (8)C5—H5A0.960 (18)
Co1—C22.1113 (8)C5—H5B0.962 (18)
Co1—C2ii2.1113 (8)C5—H5C0.976 (17)
Co1—C2i2.1113 (8)C6—H6A0.94 (2)
C1—C21.4304 (12)C6—H6B1.016 (16)
C1—C2ii1.4304 (12)C6—H6C0.973 (16)
C1—C41.4961 (18)
C1i—Co1—C1180.0C3—Co1—C2i140.46 (3)
C1i—Co1—C3ii113.16 (4)C3i—Co1—C2i39.54 (3)
C1—Co1—C3ii66.84 (4)C3iii—Co1—C2i66.67 (3)
C1i—Co1—C3113.16 (4)C2iii—Co1—C2i66.53 (5)
C1—Co1—C366.84 (4)C2—Co1—C2i180.0
C3ii—Co1—C339.98 (5)C2ii—Co1—C2i113.47 (5)
C1i—Co1—C3i66.84 (4)C2—C1—C2ii108.12 (10)
C1—Co1—C3i113.16 (4)C2—C1—C4125.94 (5)
C3ii—Co1—C3i140.02 (5)C2ii—C1—C4125.93 (5)
C3—Co1—C3i180.0C2—C1—Co170.85 (6)
C1i—Co1—C3iii66.84 (4)C2ii—C1—Co170.85 (6)
C1—Co1—C3iii113.16 (4)C4—C1—Co1124.99 (9)
C3ii—Co1—C3iii180.0C3—C2—C1107.84 (8)
C3—Co1—C3iii140.02 (5)C3—C2—C5126.09 (9)
C3i—Co1—C3iii39.98 (5)C1—C2—C5126.07 (9)
C1i—Co1—C2iii39.79 (3)C3—C2—Co169.63 (5)
C1—Co1—C2iii140.21 (3)C1—C2—Co169.36 (6)
C3ii—Co1—C2iii140.46 (3)C5—C2—Co1126.81 (7)
C3—Co1—C2iii113.34 (3)C2—C3—C3ii108.08 (5)
C3i—Co1—C2iii66.66 (3)C2—C3—C6126.09 (8)
C3iii—Co1—C2iii39.54 (3)C3ii—C3—C6125.78 (5)
C1i—Co1—C2140.21 (3)C2—C3—Co170.82 (5)
C1—Co1—C239.79 (3)C3ii—C3—Co170.01 (2)
C3ii—Co1—C266.67 (3)C6—C3—Co1126.88 (6)
C3—Co1—C239.54 (3)C1—C4—H4A112.8 (13)
C3i—Co1—C2140.46 (3)C1—C4—H4B113.5 (11)
C3iii—Co1—C2113.33 (3)H4A—C4—H4B107.0 (15)
C2iii—Co1—C2113.47 (5)C2—C5—H5A112.8 (15)
C1i—Co1—C2ii140.21 (3)C2—C5—H5B114.7 (11)
C1—Co1—C2ii39.79 (3)H5A—C5—H5B100.5 (18)
C3ii—Co1—C2ii39.54 (3)C2—C5—H5C110.1 (9)
C3—Co1—C2ii66.67 (3)H5A—C5—H5C106.7 (16)
C3i—Co1—C2ii113.33 (3)H5B—C5—H5C111.4 (14)
C3iii—Co1—C2ii140.46 (3)C3—C6—H6A109.0 (11)
C2iii—Co1—C2ii180.0C3—C6—H6B110.4 (9)
C2—Co1—C2ii66.53 (5)H6A—C6—H6B112.4 (16)
C1i—Co1—C2i39.79 (3)C3—C6—H6C110.7 (9)
C1—Co1—C2i140.21 (3)H6A—C6—H6C107.2 (15)
C3ii—Co1—C2i113.33 (3)H6B—C6—H6C107.2 (13)
C1i—Co1—C1—C222.38 (12)C2iii—Co1—C2—C1141.96 (6)
C3ii—Co1—C1—C280.81 (6)C2ii—Co1—C2—C1−38.04 (6)
C3—Co1—C1—C237.16 (5)C2i—Co1—C2—C1−59.99 (6)
C3i—Co1—C1—C2−142.84 (5)C1i—Co1—C2—C559.74 (11)
C3iii—Co1—C1—C2−99.18 (6)C1—Co1—C2—C5−120.26 (11)
C2iii—Co1—C1—C2−62.03 (10)C3ii—Co1—C2—C5158.44 (10)
C2ii—Co1—C1—C2117.97 (10)C3—Co1—C2—C5120.46 (11)
C2i—Co1—C1—C2180.0C3i—Co1—C2—C5−59.54 (11)
C1i—Co1—C1—C2ii−95.59 (13)C3iii—Co1—C2—C5−21.56 (10)
C3ii—Co1—C1—C2ii−37.16 (5)C2iii—Co1—C2—C521.70 (8)
C3—Co1—C1—C2ii−80.82 (6)C2ii—Co1—C2—C5−158.30 (8)
C3i—Co1—C1—C2ii99.18 (6)C2i—Co1—C2—C5179.75 (9)
C3iii—Co1—C1—C2ii142.84 (5)C1—C2—C3—C3ii−1.34 (8)
C2iii—Co1—C1—C2ii180.0C5—C2—C3—C3ii178.27 (8)
C2—Co1—C1—C2ii−117.97 (10)Co1—C2—C3—C3ii−60.38 (2)
C2i—Co1—C1—C2ii62.03 (10)C1—C2—C3—C6−178.77 (9)
C1i—Co1—C1—C4143.40 (12)C5—C2—C3—C60.85 (14)
C3ii—Co1—C1—C4−158.17 (3)Co1—C2—C3—C6122.20 (9)
C3—Co1—C1—C4158.17 (3)C1—C2—C3—Co159.04 (7)
C3i—Co1—C1—C4−21.83 (3)C5—C2—C3—Co1−121.35 (9)
C3iii—Co1—C1—C421.83 (3)C1i—Co1—C3—C2142.61 (5)
C2iii—Co1—C1—C458.98 (5)C1—Co1—C3—C2−37.39 (5)
C2—Co1—C1—C4121.01 (5)C3ii—Co1—C3—C2−118.44 (5)
C2ii—Co1—C1—C4−121.01 (5)C3i—Co1—C3—C2−112.12 (6)
C2i—Co1—C1—C4−58.99 (5)C3iii—Co1—C3—C261.56 (5)
C2ii—C1—C2—C32.17 (13)C2iii—Co1—C3—C299.14 (7)
C4—C1—C2—C3−179.08 (11)C2ii—Co1—C3—C2−80.87 (7)
Co1—C1—C2—C3−59.21 (6)C2i—Co1—C3—C2180.0
C2ii—C1—C2—C5−177.44 (7)C1i—Co1—C3—C3ii−98.952 (19)
C4—C1—C2—C51.30 (17)C1—Co1—C3—C3ii81.049 (19)
Co1—C1—C2—C5121.18 (9)C3i—Co1—C3—C3ii6.32 (2)
C2ii—C1—C2—Co161.38 (8)C3iii—Co1—C3—C3ii180.0
C4—C1—C2—Co1−119.87 (12)C2iii—Co1—C3—C3ii−142.43 (3)
C1i—Co1—C2—C3−60.72 (8)C2—Co1—C3—C3ii118.44 (5)
C1—Co1—C2—C3119.28 (8)C2ii—Co1—C3—C3ii37.57 (3)
C3ii—Co1—C2—C337.98 (5)C2i—Co1—C3—C3ii−61.56 (5)
C3i—Co1—C2—C3180.0C1i—Co1—C3—C621.37 (9)
C3iii—Co1—C2—C3−142.02 (5)C1—Co1—C3—C6−158.63 (9)
C2iii—Co1—C2—C3−98.77 (5)C3ii—Co1—C3—C6120.32 (8)
C2ii—Co1—C2—C381.24 (5)C3i—Co1—C3—C6126.64 (8)
C2i—Co1—C2—C359.29 (5)C3iii—Co1—C3—C6−59.68 (8)
C1i—Co1—C2—C1180.0C2iii—Co1—C3—C6−22.11 (9)
C3ii—Co1—C2—C1−81.30 (6)C2—Co1—C3—C6−121.24 (10)
C3—Co1—C2—C1−119.28 (8)C2ii—Co1—C3—C6157.89 (9)
C3i—Co1—C2—C160.72 (8)C2i—Co1—C3—C658.76 (10)
C3iii—Co1—C2—C198.70 (6)

Symmetry codes: (i) −x, −y, −z; (ii) −x, y, z; (iii) x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2590).

References

  • Arrais, A., Diana, E., Gobetto, R., Milanesio, M., Viterbo, D. & Stanghellini, P. L. (2003). Eur. J. Inorg. Chem. pp. 1186–1192.
  • Augart, N., Boese, R. & Schmid, G. (1991). Z. Anorg. Allg. Chem.595, 27–34.
  • Bruker (2008). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Connelly, N. G. & Geiger, W. E. (1996). Chem. Rev.96, 877–910. [PubMed]
  • Freyburg, D. P., Robbins, J. L., Raymond, K. N. & Smart, J. C. (1979). J. Am. Chem. Soc.101, 892–897.
  • Robbins, J. L., Edelstein, N., Spencer, B. & Smart, J. C. (1982). J. Am. Chem. Soc.104, 1882–1893.
  • Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [PubMed]
  • Struchkov, Yu. T., Andrianov, V. G., Sal’nikova, T. N., Lyatifov, I. R. & Materikova, R. B. (1978). J. Organomet. Chem.145, 213–223.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography