PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m475.
Published online 2009 March 31. doi:  10.1107/S1600536809011441
PMCID: PMC2969060

Aqua­dinitrato(quioxalino[2,3-f][1,10]phenanthroline)nickel(II) monohydrate

Abstract

In the crystal of the title compound, [Ni(NO3)2(C18H10N4)(H2O)]·H2O, the NiII ion is coordinated in a distorted octahedral geometry by two N atoms of the 1,10-phenanthroline moiety of the ligand, three O atoms from two nitrate anions and an O atom from one water mol­ecule. O—H(...)O hydrogen bonds between the coordinated and the solvent water molecules and between these water molecules and the nitrate O atoms help to establish the crystal packing.

Related literature

For transition metal complexes and their potential applications as functional materials and enzymes, see: Noro et al. (2000 [triangle]); Yaghi et al. (1998 [triangle]). For quinoxaline derivates and 1,10-phenanthroline as electron-transporting materials, see: Ambroise & Maiya (2000 [triangle]); Lo & Hui (2005 [triangle]); Thomas et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m475-scheme1.jpg

Experimental

Crystal data

  • [Ni(NO3)2(C18H10N4)(H2O)]·H2O
  • M r = 501.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m475-efi1.jpg
  • a = 7.300 (3) Å
  • b = 27.872 (12) Å
  • c = 9.950 (4) Å
  • β = 109.005 (6)°
  • V = 1914.1 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.08 mm−1
  • T = 293 K
  • 0.24 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.792, T max = 0.805
  • 12703 measured reflections
  • 3338 independent reflections
  • 2255 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.125
  • S = 0.99
  • 3338 reflections
  • 314 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.02 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011441/at2754sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011441/at2754Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (No. 2007–005) for financial support.

supplementary crystallographic information

Comment

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). And quinoxaline derivates and 1,10-phenanthroline are known to function as electron-transporting materials (Ambroise & Maiya, 2000; Lo & Hui, 2005; Thomas, et al., 2005). We report here the crystal structure of the title nitrate(II) complex, (I), containing quinoxaline and 1,10-phenanthroline groups.

In the crystal of the title compound (Fig. 1), the NiII ion is coordinated by two N atoms of the 1,10-phenanthroline ligand, three O atoms from the two nitrate anions and an O atom from one water molecule. The O—H···O hydrogen bonds are observed between NO3- and the water molecule. The hydrogen bond distances of the O1W—H1WA···O6, O1W—H1WB···O2W, O2W—H2WB···O3 and O2W—H2WA···O4, are 2.839 (5), 2.630 (6), 2.873 (5) and 2.798 (5) Å, respectively (Table 1). In the crystal structure, O—H···O hydrogen bonds interactions may help to establish the packing.

Experimental

A solution of 1,10-phenanthroline-5,6-dione (2.1 g, 0.01 mol) in ethanol (30 ml) was added to a stirred solution of benzene-1,2-diamine (1.08 g, 0.01 mol) in ethanol (80 ml) at 293 K. The solution was stirred at room temperature for 12 h, then the 10 ml of NaOH solution (1 M) was added to, and the two phase mixture was well stirred for 8 min. The mixture was filtered. The residue was washed with 30 ml CH3CH2OCH2CH3. The solid product was dissolved in 90 ml ethanol, then a solution of Ni(N03)2, (2.55 g, 0.01 mol) in H2O (20 ml) was added and the resulting solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After two weeks, green laths and prisms of (I) were isolated.

Refinement

Water H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[Ni(NO3)2(C18H10N4)(H2O)]·H2OF(000) = 1024
Mr = 501.04Dx = 1.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3338 reflections
a = 7.300 (3) Åθ = 1.5–25.0°
b = 27.872 (12) ŵ = 1.08 mm1
c = 9.950 (4) ÅT = 293 K
β = 109.005 (6)°Prism, green
V = 1914.1 (14) Å30.24 × 0.21 × 0.19 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3338 independent reflections
Radiation source: fine-focus sealed tube2255 reflections with I > 2σ(I)
graphiteRint = 0.062
[var phi] and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→8
Tmin = 0.792, Tmax = 0.805k = −29→33
12703 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.0654P)2] where P = (Fo2 + 2Fc2)/3
3338 reflections(Δ/σ)max < 0.001
314 parametersΔρmax = 1.02 e Å3
4 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1W0.4569 (6)0.23839 (11)0.3617 (4)0.0500 (8)
O2W−0.2513 (6)0.25558 (15)0.2685 (5)0.0748 (11)
H1WA0.355 (5)0.246 (2)0.298 (5)0.11 (2)*
H2WA−0.140 (4)0.246 (2)0.313 (6)0.10 (2)*
H2WB−0.229 (10)0.271 (2)0.205 (5)0.12 (3)*
H1WB0.559 (5)0.2429 (19)0.343 (6)0.08 (2)*
C10.2027 (6)−0.07484 (15)0.0816 (4)0.0381 (10)
C20.1687 (7)−0.12547 (15)0.0792 (5)0.0491 (12)
H20.1650−0.14120.16070.059*
C30.1418 (7)−0.15036 (16)−0.0432 (5)0.0509 (12)
H30.1195−0.1832−0.04410.061*
C40.1467 (6)−0.12769 (16)−0.1693 (5)0.0473 (11)
H40.1275−0.1455−0.25180.057*
C50.1798 (6)−0.07968 (15)−0.1691 (4)0.0437 (11)
H50.1829−0.0648−0.25210.052*
C60.2095 (6)−0.05199 (15)−0.0451 (4)0.0389 (10)
C70.2656 (6)0.02039 (14)0.0708 (4)0.0367 (10)
C80.3059 (6)0.07219 (14)0.0721 (4)0.0361 (10)
C90.3115 (6)0.09755 (15)−0.0475 (4)0.0435 (11)
H90.28450.0820−0.13450.052*
C100.3567 (7)0.14525 (15)−0.0365 (4)0.0448 (11)
H100.35970.1624−0.11590.054*
C110.3984 (6)0.16799 (15)0.0953 (4)0.0418 (11)
H110.43640.20000.10310.050*
C120.3390 (5)0.09756 (13)0.1985 (4)0.0331 (9)
C130.3222 (5)0.07486 (14)0.3249 (4)0.0325 (9)
C140.3228 (6)0.08498 (15)0.5558 (4)0.0434 (11)
H140.33960.10460.63450.052*
C150.2730 (7)0.03711 (15)0.5646 (4)0.0478 (12)
H150.25540.02540.64700.057*
C160.2501 (6)0.00718 (15)0.4488 (4)0.0435 (11)
H160.2178−0.02500.45240.052*
C170.2766 (6)0.02637 (14)0.3261 (4)0.0343 (10)
C180.2550 (6)−0.00271 (14)0.1970 (4)0.0360 (10)
N10.2418 (5)−0.00420 (12)−0.0496 (3)0.0386 (8)
N20.2264 (5)−0.04985 (12)0.2022 (3)0.0393 (8)
N30.3856 (5)0.14541 (11)0.2110 (3)0.0364 (8)
N40.3473 (5)0.10402 (12)0.4398 (3)0.0371 (8)
N50.8338 (6)0.13711 (13)0.5559 (4)0.0462 (9)
N60.1912 (5)0.21527 (13)0.5388 (4)0.0448 (9)
O10.7783 (5)0.10649 (12)0.4602 (3)0.0641 (10)
O20.9965 (4)0.13624 (12)0.6460 (4)0.0659 (10)
O30.7158 (4)0.17099 (11)0.5592 (3)0.0546 (9)
O40.0965 (5)0.20873 (11)0.4119 (3)0.0591 (9)
O50.3600 (4)0.19605 (10)0.5873 (3)0.0455 (8)
O60.1315 (5)0.23972 (12)0.6206 (4)0.0602 (9)
Ni10.42395 (7)0.170749 (17)0.40994 (5)0.0345 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1W0.065 (3)0.0339 (19)0.049 (2)−0.0001 (18)0.016 (2)−0.0016 (15)
O2W0.057 (3)0.073 (3)0.090 (3)0.008 (2)0.018 (2)0.035 (2)
C10.041 (2)0.033 (2)0.043 (2)−0.0042 (19)0.0175 (19)−0.007 (2)
C20.064 (3)0.034 (3)0.054 (3)−0.003 (2)0.026 (2)0.001 (2)
C30.062 (3)0.029 (2)0.067 (3)−0.008 (2)0.029 (3)−0.011 (2)
C40.055 (3)0.041 (3)0.048 (3)−0.006 (2)0.020 (2)−0.011 (2)
C50.052 (3)0.037 (3)0.042 (2)−0.008 (2)0.015 (2)−0.005 (2)
C60.038 (2)0.034 (3)0.044 (2)−0.0006 (19)0.0121 (19)−0.007 (2)
C70.041 (2)0.033 (2)0.035 (2)0.0029 (18)0.0112 (18)−0.0014 (18)
C80.042 (2)0.031 (2)0.035 (2)0.0029 (19)0.0113 (18)0.0000 (18)
C90.058 (3)0.037 (3)0.033 (2)−0.002 (2)0.012 (2)−0.0036 (19)
C100.069 (3)0.029 (2)0.042 (2)0.001 (2)0.025 (2)0.005 (2)
C110.053 (3)0.029 (2)0.045 (3)−0.001 (2)0.018 (2)0.002 (2)
C120.035 (2)0.026 (2)0.037 (2)0.0036 (18)0.0107 (18)0.0009 (18)
C130.034 (2)0.029 (2)0.034 (2)0.0008 (18)0.0113 (17)−0.0007 (18)
C140.055 (3)0.039 (3)0.039 (2)0.003 (2)0.019 (2)−0.005 (2)
C150.071 (3)0.035 (3)0.043 (2)0.000 (2)0.027 (2)0.002 (2)
C160.062 (3)0.030 (2)0.045 (3)−0.003 (2)0.026 (2)−0.003 (2)
C170.037 (2)0.033 (2)0.036 (2)0.0023 (18)0.0162 (18)−0.0001 (18)
C180.040 (2)0.030 (2)0.038 (2)0.0006 (18)0.0131 (18)−0.0015 (19)
N10.046 (2)0.034 (2)0.0349 (19)−0.0001 (16)0.0117 (16)−0.0026 (16)
N20.052 (2)0.029 (2)0.0410 (19)0.0008 (16)0.0214 (17)−0.0016 (16)
N30.041 (2)0.0288 (19)0.041 (2)−0.0005 (15)0.0146 (16)−0.0008 (16)
N40.044 (2)0.032 (2)0.0355 (19)0.0018 (16)0.0143 (16)−0.0030 (16)
N50.057 (3)0.039 (2)0.048 (2)0.001 (2)0.025 (2)0.0066 (19)
N60.048 (2)0.035 (2)0.052 (2)−0.0032 (18)0.018 (2)−0.0110 (18)
O10.084 (3)0.055 (2)0.056 (2)0.0090 (19)0.0272 (19)−0.0098 (18)
O20.043 (2)0.080 (3)0.069 (2)0.0116 (18)0.0104 (18)0.0144 (19)
O30.0478 (19)0.0411 (19)0.068 (2)0.0069 (16)0.0097 (16)−0.0122 (16)
O40.057 (2)0.064 (2)0.0475 (19)0.0018 (17)0.0046 (16)−0.0121 (16)
O50.0441 (18)0.0402 (18)0.0500 (18)0.0038 (14)0.0123 (14)−0.0040 (14)
O60.062 (2)0.055 (2)0.071 (2)0.0023 (17)0.0325 (18)−0.0205 (18)
Ni10.0469 (4)0.0241 (3)0.0321 (3)−0.0013 (2)0.0122 (2)−0.0036 (2)

Geometric parameters (Å, °)

O1W—Ni11.979 (3)C11—H110.9300
O1W—H1WA0.83 (2)C12—N31.372 (5)
O1W—H1WB0.83 (2)C12—C131.448 (5)
O2W—H2WA0.83 (2)C13—N41.366 (5)
O2W—H2WB0.83 (2)C13—C171.393 (5)
C1—N21.349 (5)C14—N41.334 (5)
C1—C61.427 (6)C14—C151.393 (6)
C1—C21.432 (6)C14—H140.9300
C2—C31.359 (6)C15—C161.388 (6)
C2—H20.9300C15—H150.9300
C3—C41.416 (6)C16—C171.402 (5)
C3—H30.9300C16—H160.9300
C4—C51.360 (6)C17—C181.484 (5)
C4—H40.9300C18—N21.334 (5)
C5—C61.411 (5)N3—Ni12.033 (3)
C5—H50.9300N4—Ni11.992 (3)
C6—N11.356 (5)N5—O21.233 (4)
C7—N11.341 (5)N5—O11.244 (4)
C7—C181.436 (5)N5—O31.286 (4)
C7—C81.472 (5)N6—O41.240 (4)
C8—C121.393 (5)N6—O41.240 (4)
C8—C91.396 (5)N6—O61.244 (4)
C9—C101.366 (6)N6—O51.285 (4)
C9—H90.9300O3—Ni12.164 (3)
C10—C111.399 (6)O4—O40.000 (6)
C10—H100.9300O5—Ni12.090 (3)
C11—N31.342 (5)
Ni1—O1W—H1WA106 (4)N4—C14—H14118.4
Ni1—O1W—H1WB113 (4)C15—C14—H14118.4
H1WA—O1W—H1WB116 (6)C16—C15—C14119.1 (4)
H2WA—O2W—H2WB100 (6)C16—C15—H15120.4
N2—C1—C6121.6 (4)C14—C15—H15120.4
N2—C1—C2119.7 (4)C15—C16—C17118.7 (4)
C6—C1—C2118.7 (4)C15—C16—H16120.7
C3—C2—C1119.5 (4)C17—C16—H16120.7
C3—C2—H2120.3C13—C17—C16118.6 (4)
C1—C2—H2120.3C13—C17—C18118.7 (3)
C2—C3—C4121.9 (4)C16—C17—C18122.6 (4)
C2—C3—H3119.1N2—C18—C7121.9 (4)
C4—C3—H3119.1N2—C18—C17118.6 (3)
C5—C4—C3119.6 (4)C7—C18—C17119.5 (4)
C5—C4—H4120.2C7—N1—C6116.5 (3)
C3—C4—H4120.2C18—N2—C1116.8 (3)
C4—C5—C6121.1 (4)C11—N3—C12117.5 (3)
C4—C5—H5119.5C11—N3—Ni1130.3 (3)
C6—C5—H5119.5C12—N3—Ni1112.2 (2)
N1—C6—C5119.2 (4)C14—N4—C13117.9 (3)
N1—C6—C1121.6 (4)C14—N4—Ni1128.6 (3)
C5—C6—C1119.3 (4)C13—N4—Ni1113.5 (3)
N1—C7—C18121.6 (4)O2—N5—O1122.7 (4)
N1—C7—C8118.5 (4)O2—N5—O3119.3 (4)
C18—C7—C8119.9 (3)O1—N5—O3118.0 (4)
C12—C8—C9117.9 (4)O4—N6—O40.0 (4)
C12—C8—C7118.8 (4)O4—N6—O6123.3 (4)
C9—C8—C7123.4 (4)O4—N6—O6123.3 (4)
C10—C9—C8119.9 (4)O4—N6—O5118.0 (4)
C10—C9—H9120.1O4—N6—O5118.0 (4)
C8—C9—H9120.1O6—N6—O5118.7 (4)
C9—C10—C11119.3 (4)N5—O3—Ni1119.9 (3)
C9—C10—H10120.4O4—O4—N60(10)
C11—C10—H10120.4N6—O5—Ni1105.9 (2)
N3—C11—C10122.5 (4)O1W—Ni1—N4170.98 (15)
N3—C11—H11118.7O1W—Ni1—N394.82 (14)
C10—C11—H11118.7N4—Ni1—N382.22 (13)
N3—C12—C8122.7 (4)O1W—Ni1—O587.80 (13)
N3—C12—C13115.7 (3)N4—Ni1—O592.19 (12)
C8—C12—C13121.5 (4)N3—Ni1—O5160.31 (12)
N4—C13—C17122.5 (4)O1W—Ni1—O389.62 (14)
N4—C13—C12116.2 (3)N4—Ni1—O399.32 (12)
C17—C13—C12121.3 (3)N3—Ni1—O3117.52 (13)
N4—C14—C15123.1 (4)O5—Ni1—O381.96 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6i0.83 (2)2.02 (2)2.839 (5)170 (6)
O1W—H1WB···O2Wii0.83 (2)1.81 (2)2.630 (6)169 (6)
O2W—H2WB···O3iii0.83 (2)2.11 (4)2.873 (5)153 (7)
O2W—H2WA···O40.83 (2)1.98 (2)2.798 (5)167 (6)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2754).

References

  • Ambroise, A. & Maiya, B. G. (2000). Inorg. Chem.39, 4264–4272. [PubMed]
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Lo, K. K.-W. & Hui, W.-K. (2005). Inorg. Chem 44, 1992–2002. [PubMed]
  • Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed.39, 2081–2084. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thomas, K. R. J., Velusamy, M. T. L., Jiann Chuen, C. H. & Tao, Y. T. (2005). Inorg. Chem.39, 4264–4272.
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography