PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m425.
Published online 2009 March 25. doi:  10.1107/S1600536809009660
PMCID: PMC2969057

Bis[μ-5-(5-carboxyl­ato-3-pyrid­yl)tetra­zolato-κ3 N 1,N 5:N 2]bis­[triaqua­zinc(II)]

Abstract

In the title complex, [Zn2(C7H3N5O2)2(H2O)6], the 5-(5-carboxyl­ato-3-pyrid­yl)tetra­zolate ligand chelates the ZnII center through one pyridyl N and one tetra­zolate N atom, and uses another N atom to bridge to the second Zn atom, forming a centrosymmetric dinuclear unit. Three coordinated water mol­ecules complete the distorted octa­hedral geometry of the ZnII atom. O—H(...)O and O—H(...)N hydrogen bonds involving the coordinated water mol­ecules, tetra­zolate N atoms and the carboxyl­ate group result in a three-dimensional structure.

Related literature

For background, see: Li et al. (2005 [triangle]); Sun et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m425-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C7H3N5O2)2(H2O)6]
  • M r = 617.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m425-efi1.jpg
  • a = 12.751 (5) Å
  • b = 12.685 (4) Å
  • c = 6.992 (3) Å
  • β = 104.914 (4)°
  • V = 1092.9 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.27 mm−1
  • T = 295 K
  • 0.12 × 0.08 × 0.08 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000 [triangle]) T min = 0.880, T max = 1.000 (expected range = 0.734–0.834)
  • 8378 measured reflections
  • 2502 independent reflections
  • 2146 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.064
  • S = 1.10
  • 2502 reflections
  • 187 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku, 2000 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009660/ng2558sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009660/ng2558Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Zhejiang Provincial Natural Science Foundation of China (Y4080093 and Y407189).

supplementary crystallographic information

Comment

Metal complexes based on tetrazol ligands have attracted great interests (Li et al. 2005; Sun et al. 2009). In the contribution, we report the title binuclear complex (I) based on tetrazol ligand obtained by in situ ligand synthesis.

In the structure of (I), 3-carboxylatopyridyl-6-tetrazolato ligand chelates ZnII center through one pyridyl N and one tetrazolato N and another bridging tetrazolato N atom results in a centrosymmetrical binuclear unit. Three coordinated water molecules complete the distorted octahedral geometry of ZnII center (Fig.1). There exist various hydrogen-bonding interactions between coordinated water molecules and tetrazol N, carboxylate group of the ligand (Table. 2). The hydrogen bonds connect binuclear complex into a three-dimensional structure (Fig.2).

Experimental

A mixture of Zn(NO3)2.6H2O (149 mg, 0.5 mmol), sodium azide(33 mg, 0.5 mmol) and 6-cyanopyridine-3-carboxylic acid (74 mg, 0.5 mmol) was suspended in water (10 ml) and heated in a teflon-lined steel bomb at 160 ° C for 3 days. The colorless crystals were obtained.

Refinement

H atoms bonded to C were located geometrically (C—H = 0.95 Å) with Uiso(H) = 1.2 Ueq(C). H atoms bonded to O were located by difference maps and refined with a distance restraint of O—H = 0.85 (1) Å. The displacement factors were freely refined.

Figures

Fig. 1.
ORTEP of complex (I) with 30% thermal ellipsoids. [Symmetry code: (A) -x, 1-y, -z.]
Fig. 2.
The packing structure viewed along a axis.

Crystal data

[Zn2(C7H3N5O2)2(H2O)6]F(000) = 624
Mr = 617.12Dx = 1.875 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2535 reflections
a = 12.751 (5) Åθ = 3.2–27.5°
b = 12.685 (4) ŵ = 2.27 mm1
c = 6.992 (3) ÅT = 295 K
β = 104.914 (4)°Prism, colorless
V = 1092.9 (7) Å30.12 × 0.08 × 0.08 mm
Z = 2

Data collection

Rigaku Mercury CCD diffractometer2502 independent reflections
Radiation source: fine-focus sealed tube2146 reflections with I > 2σ(I)
graphiteRint = 0.031
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.3°
CCD_Profile_fitting scansh = −13→16
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)k = −16→13
Tmin = 0.880, Tmax = 1.000l = −9→8
8378 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0236P)2 + 0.4632P] where P = (Fo2 + 2Fc2)/3
2502 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.44 e Å3
6 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.16114 (2)0.451195 (18)0.04261 (4)0.01891 (9)
N10.29843 (15)0.55236 (13)0.1954 (3)0.0199 (4)
O20.62383 (14)0.48266 (13)0.2838 (3)0.0345 (4)
O10.67185 (13)0.64838 (12)0.3616 (2)0.0273 (4)
N20.08352 (15)0.59050 (14)0.1144 (3)0.0184 (4)
C10.60194 (19)0.57469 (18)0.3163 (3)0.0219 (5)
C40.3458 (2)0.72742 (18)0.3169 (4)0.0258 (5)
H40.32390.79530.34910.031*
C60.26966 (19)0.65036 (16)0.2412 (3)0.0196 (5)
C30.4544 (2)0.70372 (18)0.3447 (4)0.0260 (5)
H30.50790.75570.39580.031*
C20.48558 (18)0.60427 (17)0.2980 (3)0.0193 (5)
C50.40336 (19)0.53119 (17)0.2249 (3)0.0217 (5)
H50.42360.46240.19440.026*
O30.26729 (15)0.34205 (13)−0.0178 (3)0.0278 (4)
O40.16780 (16)0.52386 (13)−0.2289 (3)0.0277 (4)
C70.15272 (19)0.66661 (16)0.1971 (3)0.0184 (5)
O50.16098 (16)0.37901 (15)0.3062 (3)0.0353 (5)
N5−0.01525 (15)0.63182 (14)0.0916 (3)0.0195 (4)
N4−0.00558 (16)0.72963 (15)0.1574 (3)0.0250 (4)
N30.09973 (16)0.75412 (15)0.2242 (3)0.0245 (4)
H4A0.141 (2)0.5845 (12)−0.254 (4)0.041 (9)*
H3A0.289 (2)0.2851 (13)0.042 (4)0.040 (8)*
H4B0.2293 (14)0.527 (2)−0.254 (5)0.047 (9)*
H3B0.279 (2)0.339 (2)−0.132 (2)0.045 (9)*
H5A0.114 (2)0.336 (2)0.320 (5)0.058 (10)*
H5B0.2086 (18)0.383 (2)0.415 (2)0.040 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.01593 (16)0.01373 (14)0.02694 (15)−0.00018 (10)0.00528 (11)−0.00126 (10)
N10.0160 (10)0.0159 (9)0.0274 (10)−0.0006 (7)0.0051 (8)−0.0027 (8)
O20.0210 (10)0.0243 (9)0.0606 (12)0.0007 (7)0.0146 (9)−0.0065 (8)
O10.0170 (9)0.0271 (9)0.0372 (10)−0.0048 (7)0.0059 (8)−0.0073 (7)
N20.0140 (10)0.0172 (9)0.0240 (10)0.0005 (7)0.0051 (8)−0.0017 (7)
C10.0166 (13)0.0276 (13)0.0222 (12)−0.0001 (9)0.0061 (10)−0.0008 (9)
C40.0196 (13)0.0194 (11)0.0382 (14)0.0004 (9)0.0071 (11)−0.0072 (10)
C60.0188 (13)0.0170 (11)0.0228 (11)0.0007 (9)0.0051 (10)−0.0022 (9)
C30.0206 (13)0.0215 (12)0.0344 (14)−0.0052 (10)0.0042 (11)−0.0072 (10)
C20.0146 (12)0.0207 (11)0.0222 (12)−0.0003 (9)0.0039 (9)−0.0007 (9)
C50.0173 (13)0.0192 (11)0.0288 (12)0.0011 (9)0.0063 (10)−0.0016 (9)
O30.0332 (11)0.0185 (9)0.0347 (10)0.0079 (7)0.0141 (9)0.0029 (8)
O40.0258 (11)0.0238 (9)0.0367 (10)0.0053 (7)0.0139 (9)0.0075 (8)
C70.0168 (12)0.0167 (10)0.0218 (11)−0.0013 (8)0.0050 (9)−0.0036 (9)
O50.0301 (12)0.0394 (11)0.0302 (10)−0.0183 (9)−0.0033 (9)0.0129 (8)
N50.0135 (10)0.0175 (9)0.0273 (10)0.0009 (7)0.0050 (8)−0.0028 (8)
N40.0185 (11)0.0199 (10)0.0363 (12)0.0006 (8)0.0067 (9)−0.0077 (8)
N30.0170 (11)0.0202 (10)0.0353 (11)0.0011 (8)0.0048 (9)−0.0089 (8)

Geometric parameters (Å, °)

Zn1—O32.0547 (18)C6—C71.457 (3)
Zn1—O52.0587 (19)C3—C21.386 (3)
Zn1—O42.1317 (18)C3—H30.9500
Zn1—N5i2.1333 (19)C2—C51.394 (3)
Zn1—N22.1470 (18)C5—H50.9500
Zn1—N12.2114 (19)O3—H3A0.846 (10)
N1—C51.328 (3)O3—H3B0.849 (10)
N1—C61.358 (3)O4—H4A0.841 (10)
O2—C11.235 (3)O4—H4B0.846 (10)
O1—C11.274 (3)C7—N31.338 (3)
N2—C71.335 (3)O5—H5A0.841 (10)
N2—N51.335 (2)O5—H5B0.844 (10)
C1—C21.504 (3)N5—N41.318 (3)
C4—C31.381 (3)N5—Zn1i2.1333 (19)
C4—C61.384 (3)N4—N31.340 (3)
C4—H40.9500
O3—Zn1—O592.12 (8)N1—C6—C7113.79 (19)
O3—Zn1—O485.92 (7)C4—C6—C7124.1 (2)
O5—Zn1—O4177.71 (8)C4—C3—C2120.2 (2)
O3—Zn1—N5i97.06 (7)C4—C3—H3119.9
O5—Zn1—N5i88.43 (7)C2—C3—H3119.9
O4—Zn1—N5i92.97 (7)C3—C2—C5117.2 (2)
O3—Zn1—N2166.01 (7)C3—C2—C1122.9 (2)
O5—Zn1—N292.86 (8)C5—C2—C1119.8 (2)
O4—Zn1—N288.79 (7)N1—C5—C2123.7 (2)
N5i—Zn1—N296.13 (7)N1—C5—H5118.1
O3—Zn1—N190.51 (7)C2—C5—H5118.1
O5—Zn1—N190.49 (7)Zn1—O3—H3A128.6 (19)
O4—Zn1—N188.35 (7)Zn1—O3—H3B121 (2)
N5i—Zn1—N1172.39 (7)H3A—O3—H3B108 (3)
N2—Zn1—N176.39 (7)Zn1—O4—H4A118.2 (19)
C5—N1—C6118.12 (19)Zn1—O4—H4B117 (2)
C5—N1—Zn1126.76 (14)H4A—O4—H4B105 (3)
C6—N1—Zn1114.64 (15)N2—C7—N3111.1 (2)
C7—N2—N5105.42 (17)N2—C7—C6121.04 (19)
C7—N2—Zn1113.79 (15)N3—C7—C6127.8 (2)
N5—N2—Zn1140.58 (14)Zn1—O5—H5A124 (2)
O2—C1—O1124.2 (2)Zn1—O5—H5B128 (2)
O2—C1—C2119.0 (2)H5A—O5—H5B108 (3)
O1—C1—C2116.8 (2)N4—N5—N2109.10 (17)
C3—C4—C6118.7 (2)N4—N5—Zn1i127.65 (14)
C3—C4—H4120.7N2—N5—Zn1i123.21 (13)
C6—C4—H4120.7N5—N4—N3109.59 (17)
N1—C6—C4122.1 (2)C7—N3—N4104.80 (18)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4B···O2ii0.85 (1)1.94 (1)2.782 (3)172 (3)
O4—H4A···N3iii0.84 (1)2.11 (1)2.940 (3)169 (3)
O3—H3B···O1ii0.85 (1)1.88 (1)2.712 (3)169 (3)
O3—H3A···O1iv0.85 (1)1.88 (1)2.719 (2)171 (3)
O5—H5B···O1v0.84 (1)1.92 (1)2.740 (3)163 (3)
O5—H5A···N4vi0.84 (1)1.96 (1)2.800 (3)177 (3)

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x, −y+3/2, z−1/2; (iv) −x+1, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2558).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Li, J.-T., Tao, J., Huang, R.-B. & Zhang, L.-S. (2005). Acta Cryst. E61, m984–m985.
  • Rigaku (2000). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Z.-H., Meng, L.-B. & Lin, H. (2009). Acta Cryst. E65, m280. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography