PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o802–o803.
Published online 2009 March 19. doi:  10.1107/S1600536809008927
PMCID: PMC2969053

2-Fluoro-N-(4-methoxy­phen­yl)benzamide

Abstract

In the title compound, C14H12FNO2, the fluoro­benzene and methoxy­benzene rings are inclined at 27.06 (7) and 23.86 (7)°, respectively, to the amide portion of the mol­ecule and at 3.46 (9)° to one another. The meth­oxy substituent lies close to the methoxy­benzene ring plane, with a maximum deviation of 0.152 (3) Å for the methyl C atom. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link mol­ecules into rows along a. Weak C—H(...)O and C—H(...)F inter­actions further stabilize the packing, forming corrugated sheets in the bc plane.

Related literature

For the biological activity of benzamides and related compounds and their use in organic synthesis, see: Vega-Noverola et al. (1989 [triangle]); Yoo et al. (2005 [triangle]); Saeed et al. (2008 [triangle]). For related structures, see: Saeed et al. (2008 [triangle]); Chopra & Guru Row (2008 [triangle]); Donnelly et al. (2008 [triangle]); Cockroft et al. (2007 [triangle]); Spitaleri et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o802-scheme1.jpg

Experimental

Crystal data

  • C14H12FNO2
  • M r = 245.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o802-efi1.jpg
  • a = 5.2901 (2) Å
  • b = 6.6435 (3) Å
  • c = 31.7823 (11) Å
  • V = 1116.98 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 89 K
  • 0.30 × 0.23 × 0.04 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.853, T max = 0.996
  • 19727 measured reflections
  • 2185 independent reflections
  • 1980 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.096
  • S = 1.06
  • 2185 reflections
  • 168 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008927/si2159sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008927/si2159Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MA gratefully acknowledges a research scholarship from the HEC, Islamabad, under the HEC Indigenous PhD Schol­arship 5000 Scheme. We also thank the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Comment

The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). A one-pot conversion of 2-nitro-n-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones has also been reported (Yoo et al., 2005).

As part of our work on the structure of benzanilides and related compounds, we report here the structure of the title 2-fluorobenzamide derivative, I, Fig 1. In the structure of (I), the C2···C7 and C8···C13 rings are inclined at 27.06 (7)° and 23.86 (7)° respectively to the C2/C1/O1/N1/C8 amide portion of the molecule and at 3.46 (9)° to one another. The methoxy substituent lies close to the methoxybenzene ring plane with a maximum deviation of 0.152 (3) Å for C14. N-aryl 2-fluorobenzamide derivatives are reasonably common and bond distances and angles in the present molecule agree well with those in similar structures (see for example Saeed et al. 2008, Chopra & Guru Row, 2008, Donnelly et al. 2008, Cockroft et al. (2007), Spitaleri et al. 2004).

In the crystal structure intermolecular N1—H1N···O1 hydrogen bonds link molecules into rows along a. Weak C—H···O and C—H···F interactions further stabilize the packing, forming corrugated sheets in the bc plane (Table 1 and Fig.2).

Experimental

2-Fluorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 4-methoxyaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded the title compound (81%) as white needles: Anal. calcd. for C14H12FNO2: C 68.56, H 4.93, N 5.71%; found: C 68.49, H 4.97, N 5.63%

Refinement

The H atom bound to N1 was located in a difference map and refined isotropically. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 hydrogen atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged and a Flack parameter is not reported.

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
Fig. 2.
Crystal packing for (I) viewed down the b axis with hydrogen bonds drawn as dashed lines and H atoms not involved in hydrogen bonding omitted.

Crystal data

C14H12FNO2F(000) = 512
Mr = 245.25Dx = 1.458 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5036 reflections
a = 5.2901 (2) Åθ = 3.1–31.4°
b = 6.6435 (3) ŵ = 0.11 mm1
c = 31.7823 (11) ÅT = 89 K
V = 1116.98 (8) Å3Rectangular, colourless
Z = 40.30 × 0.23 × 0.04 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2185 independent reflections
Radiation source: fine-focus sealed tube1980 reflections with I > 2σ(I)
graphiteRint = 0.049
ω scansθmax = 31.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −7→7
Tmin = 0.853, Tmax = 0.996k = −8→9
19727 measured reflectionsl = −46→45

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0587P)2 + 0.1314P] where P = (Fo2 + 2Fc2)/3
2185 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.8287 (2)0.30490 (19)0.12515 (4)0.0120 (2)
H1N0.681 (4)0.274 (3)0.1327 (6)0.018 (5)*
C11.0253 (3)0.1910 (2)0.13830 (4)0.0122 (3)
O11.2460 (2)0.21863 (18)0.12733 (3)0.0195 (2)
C20.9628 (3)0.0195 (2)0.16750 (4)0.0113 (2)
C30.7617 (3)0.0129 (2)0.19568 (4)0.0138 (3)
F10.60670 (19)0.17461 (15)0.19944 (3)0.0211 (2)
C40.7144 (3)−0.1504 (3)0.22153 (4)0.0172 (3)
H40.5746−0.14940.24030.021*
C50.8740 (3)−0.3153 (2)0.21964 (5)0.0175 (3)
H50.8427−0.42950.23690.021*
C61.0809 (3)−0.3137 (2)0.19238 (5)0.0176 (3)
H61.1921−0.42590.19120.021*
C71.1234 (3)−0.1472 (2)0.16695 (4)0.0151 (3)
H71.2656−0.14670.14870.018*
C80.8450 (3)0.4821 (2)0.10044 (4)0.0109 (2)
C90.6527 (3)0.6247 (2)0.10514 (4)0.0124 (3)
H90.51540.59770.12360.015*
C100.6600 (3)0.8048 (2)0.08330 (4)0.0127 (3)
H100.52900.90100.08690.015*
C110.8609 (3)0.8447 (2)0.05591 (4)0.0113 (3)
C121.0490 (3)0.7011 (2)0.05019 (4)0.0120 (3)
H121.18300.72610.03100.014*
C131.0418 (3)0.5203 (2)0.07255 (4)0.0123 (3)
H131.17160.42320.06870.015*
O20.8549 (2)1.02823 (15)0.03604 (3)0.0144 (2)
C141.0690 (3)1.0759 (2)0.01050 (5)0.0159 (3)
H14A1.22331.06620.02740.024*
H14B1.05171.2132−0.00040.024*
H14C1.07880.9811−0.01310.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0097 (5)0.0108 (5)0.0155 (5)0.0003 (5)0.0019 (4)0.0030 (4)
C10.0124 (6)0.0103 (6)0.0138 (6)−0.0004 (5)0.0005 (5)0.0013 (5)
O10.0117 (5)0.0212 (6)0.0255 (5)0.0005 (4)0.0013 (4)0.0099 (5)
C20.0125 (6)0.0102 (6)0.0112 (5)−0.0008 (5)−0.0003 (5)0.0000 (5)
C30.0124 (6)0.0157 (6)0.0132 (6)0.0011 (5)−0.0009 (5)−0.0002 (5)
F10.0214 (5)0.0231 (5)0.0189 (4)0.0094 (4)0.0071 (4)0.0027 (4)
C40.0154 (6)0.0228 (8)0.0134 (6)−0.0033 (6)0.0003 (5)0.0036 (6)
C50.0194 (7)0.0161 (7)0.0169 (6)−0.0054 (6)−0.0028 (5)0.0056 (6)
C60.0198 (7)0.0132 (7)0.0200 (6)0.0019 (6)−0.0024 (6)0.0027 (6)
C70.0159 (6)0.0139 (6)0.0156 (6)0.0020 (6)0.0005 (5)0.0006 (5)
C80.0117 (6)0.0087 (5)0.0122 (5)0.0001 (5)−0.0013 (5)0.0005 (5)
C90.0108 (6)0.0125 (6)0.0140 (6)0.0000 (5)0.0022 (5)−0.0004 (5)
C100.0116 (6)0.0114 (6)0.0150 (6)0.0013 (5)0.0006 (5)−0.0002 (5)
C110.0124 (6)0.0091 (6)0.0123 (5)−0.0005 (5)−0.0018 (5)0.0008 (5)
C120.0110 (5)0.0123 (6)0.0127 (5)0.0003 (5)0.0010 (5)0.0009 (5)
C130.0119 (6)0.0112 (6)0.0139 (6)0.0020 (5)0.0013 (5)0.0001 (5)
O20.0145 (5)0.0108 (5)0.0178 (5)0.0019 (4)0.0029 (4)0.0042 (4)
C140.0146 (6)0.0133 (6)0.0199 (6)−0.0009 (6)0.0029 (6)0.0047 (5)

Geometric parameters (Å, °)

N1—C11.3522 (19)C8—C131.3909 (18)
N1—C81.4177 (17)C8—C91.3980 (19)
N1—H1N0.84 (2)C9—C101.3835 (19)
C1—O11.2317 (17)C9—H90.9500
C1—C21.5066 (19)C10—C111.3992 (19)
C2—C31.3914 (19)C10—H100.9500
C2—C71.396 (2)C11—O21.3734 (16)
C3—F11.3567 (17)C11—C121.3902 (19)
C3—C41.384 (2)C12—C131.3959 (19)
C4—C51.384 (2)C12—H120.9500
C4—H40.9500C13—H130.9500
C5—C61.396 (2)O2—C141.4289 (18)
C5—H50.9500C14—H14A0.9800
C6—C71.388 (2)C14—H14B0.9800
C6—H60.9500C14—H14C0.9800
C7—H70.9500
C1—N1—C8126.09 (12)C13—C8—N1123.38 (12)
C1—N1—H1N119.3 (14)C9—C8—N1117.36 (12)
C8—N1—H1N114.6 (14)C10—C9—C8120.82 (13)
O1—C1—N1123.93 (13)C10—C9—H9119.6
O1—C1—C2119.66 (13)C8—C9—H9119.6
N1—C1—C2116.40 (12)C9—C10—C11119.81 (13)
C3—C2—C7116.65 (13)C9—C10—H10120.1
C3—C2—C1126.02 (13)C11—C10—H10120.1
C7—C2—C1117.31 (12)O2—C11—C12124.45 (12)
F1—C3—C4117.34 (13)O2—C11—C10115.90 (12)
F1—C3—C2119.61 (13)C12—C11—C10119.66 (12)
C4—C3—C2123.02 (14)C11—C12—C13120.29 (13)
C3—C4—C5118.98 (14)C11—C12—H12119.9
C3—C4—H4120.5C13—C12—H12119.9
C5—C4—H4120.5C8—C13—C12120.13 (13)
C4—C5—C6119.95 (14)C8—C13—H13119.9
C4—C5—H5120.0C12—C13—H13119.9
C6—C5—H5120.0C11—O2—C14116.09 (11)
C7—C6—C5119.60 (14)O2—C14—H14A109.5
C7—C6—H6120.2O2—C14—H14B109.5
C5—C6—H6120.2H14A—C14—H14B109.5
C6—C7—C2121.77 (14)O2—C14—H14C109.5
C6—C7—H7119.1H14A—C14—H14C109.5
C2—C7—H7119.1H14B—C14—H14C109.5
C13—C8—C9119.26 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.34 (2)3.1366 (17)158.5 (17)
C4—H4···F1ii0.952.443.2472 (17)143
C14—H14B···O2iii0.982.613.3753 (18)135

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x+1/2, −y+5/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2159).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54–67.
  • Cockroft, S. L., Perkins, J., Zonta, C., Adams, H., Spey, S. E., Low, C. M. R., Vinter, J. G., Lawson, K. R., Urch, C. J. & Hunter, C. A. (2007). Org. Biomol. Chem.5, 1062–1080. [PubMed]
  • Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340. [PubMed]
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Spitaleri, A., Hunter, C. A., McCabe, J. F., Packer, M. J. & Cockroft, S. L. (2004). CrystEngComm, 6, 489–493.
  • Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.
  • Westrip, S. P. (2009). publCIF In preparation.
  • Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem.70, 6941–6943. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography