PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m462–m463.
Published online 2009 March 31. doi:  10.1107/S160053680901099X
PMCID: PMC2969050

Di-μ-iodido-bis­{[dicyclo­hexyl(phen­yl)phosphine-κP](pyridine-κN)silver(I)}

Abstract

The title compound, [Ag2I2(C5H5N)2(C18H27P)2], contains centrosymmetric dinuclear species in which each Ag atom is surrounded by a phosphine ligand, a weakly coordinating pyridine ligand and two iodide anions in a distorted tetra­hedral coordination. The two iodide anions bridge the Ag atoms, which are separated by a distance of 3.1008 (6) Å. The Ag—P distance is 2.4436 (8) Å, Ag—N is 2.386 (3)Å and the Ag—I distances are 2.8186 (4) and 2.9449 (5) Å.

Related literature

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009 [triangle]). For the coordination chemistry of AgX salts (X = F, Cl, Br, I, BF4 , PF6 , NO3 etc) with group 15 donor ligands, with the main focus on tertiary phosphines and in their context as potential anti­tumor agents, see: Berners-Price et al. (1998 [triangle]); Liu et al. (2008 [triangle]). For tertiary phosphine silver(I) complexes of mixed-base species, see: Engelhardt et al. (1989 [triangle]); Gotsis et al. (1989 [triangle]); Meijboom & Muller (2006 [triangle]). The unsymmetrical core (Ag—I—Ag′—I′) may be attributed to the partial separation of dimer into monomer of such complexes, see: Bowmaker et al. (1996 [triangle]); Meijboom & Muller (2006 [triangle]). For the solution behaviour of [L nAgX] complexes, see: Muetterties & Alegranti (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m462-scheme1.jpg

Experimental

Crystal data

  • [Ag2I2(C5H5N)2(C18H27P)2]
  • M r = 1176.47
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m462-efi1.jpg
  • a = 9.5970 (12) Å
  • b = 9.9816 (13) Å
  • c = 14.1437 (18) Å
  • α = 90.484 (3)°
  • β = 102.404 (2)°
  • γ = 112.704 (2)°
  • V = 1214.4 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.18 mm−1
  • T = 293 K
  • 0.3 × 0.22 × 0.09 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.562, T max = 0.828
  • 7951 measured reflections
  • 5723 independent reflections
  • 4310 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.073
  • S = 1.02
  • 5723 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.81 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Comparison of geometric parameters (Å, °) for selected [XAg(py)(P3)2] (X = Cl, Br or I) entities

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901099X/hg2494sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901099X/hg2494Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation and the University of Johannesburg is gratefully acknowledged. The University of the Witwatersrand (Professor D. Levendis and Professor D. G. Billing) is thanked for use of its diffractometer. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

supplementary crystallographic information

Comment

The chemistry of silver(I) complexes has been reviewed recently with regards to the coordination chemistry, the design of coordination networks and polymers containing nitrogen-donor ligands and to the chemistry of silver scorpionates and carboxylates (Meijboom et al., 2009). Our interest has been on the coordination chemistry of AgX salts (X- = F-, Cl-, Br-, I-, BF4-, PF6-, NO3-etc.) with Group 15 donor ligands with the main focus on tertiary phosphines and in their context as potential antitumor agents (Berners-Price et al., 1998; Liu et al., 2008).

Tertiary phosphine silver(I) complexes of mixed-base species have been reported but are not very common (Meijboom et al., 2009). Examples of these complexes include [XAg(py)(PPh3)2] (X = Cl or Br) (Engelhardt et al., 1989), [XAg(py)PPh3]2.C5H5N (X = Cl, Br or I) (Gotsis et al., 1989) and [IAg(py)(P-p-tol-Ph3)]2 (Meijboom & Muller, 2006). The preparation of [IAg(py)(Pcy2Ph)]2 (I) is similar to those reported and involves heating together stoichiometric mixtures of silver(I)iodide and dicyclohexylphenylphosphine in pyridine solution.

As pointed out earlier by Meijboom & Muller (2006), the resulting complex comprises of a 1:1:1 µ,µ'-diiodo-bridged dimer. The Ag atoms of this centrosymmetric title compound are coordinated to a phosphine ligand, a pyridine ligand and two iodide anions in a distorted tetrahedral manner. The bond angles around the Ag atoms are listed in Table 1. The Ag—P, Ag—N and Ag—I bond distances are typical of similar complexes. However the difference in the Ag—I and Ag—I' bond distances [2.8186 (4) and 2.9449 (5) Å] which results in an unsymmetrical core (Ag—I—Ag'-I') of the complex has been attributed to the partial separation of dimer into monomer of such complexes (Bowmaker et al., 1996; Meijboom & Muller, 2006).

In comparison (see Table 2), the same Ag—X bond distance seems larger in (I) as compared to those in [XAg(py)(PPh3)]2.C5H5N (X = Cl, Br or I) (Gotsis et al., 1989) and [IAg(py)(P-(p-tol)3)]2 (Meijboom and Muller, 2006) which are only slightly different. The bond angles in the core (Ag—X—Ag' and X—Ag—X') are similar in (I), [IAg(py)(P-(p-tol)3)]2 and [XAg(py)(PPh3)]2.C5H5N (X = I). In these structures the Ag—X—Ag' is much smaller than X—Ag—X'. The situation is slightly different for [XAg(py)(PPh3)]2.C5H5N (X = Cl or Br) in which the two angles are closer to 90°. Similarly the Ag···Ag bond distances are shorter in (I) and [IAg(py)(P-(p-tol)3)]2 but increases in [XAg(py)(PPh3)]2.C5H5N (X = Cl, Br or I). Ag—P and Ag—N bond distances are comparable in all five structures listed in Table 2.

Despite the number of structural reports of [LnAgX] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.

Experimental

Silver iodide (0.130 g, 0.43 mmol) and dicyclohexylphenylphosphine (1.009 g, 0.86 mmol) were suspended in pyridine (5 ml). The mixture was heated to give a clear solution. Colourless crystals of the title compound suitable for X-ray crystallography were obtained by slow evaporation.

Refinement

All hydrogen atoms were positioned geometrically, with C—H = 0.97 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring. Primed ...

Crystal data

[Ag2I2(C5H5N)2(C18H27P)2]Z = 1
Mr = 1176.47F(000) = 584
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5970 (12) ÅCell parameters from 8087 reflections
b = 9.9816 (13) Åθ = 1.5–28°
c = 14.1437 (18) ŵ = 2.17 mm1
α = 90.484 (3)°T = 293 K
β = 102.404 (2)°Plate, colourless
γ = 112.704 (2)°0.3 × 0.22 × 0.09 mm
V = 1214.4 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4310 reflections with I > 2σ(I)
ω scansRint = 0.014
Absorption correction: multi-scan (SADABS; Bruker, 2004)θmax = 28°, θmin = 1.5°
Tmin = 0.562, Tmax = 0.828h = −12→12
7951 measured reflectionsk = −11→13
5723 independent reflectionsl = −14→18

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031w = 1/[σ2(Fo2) + (0.0363P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.002
S = 1.01Δρmax = 0.50 e Å3
5723 reflectionsΔρmin = −0.81 e Å3
244 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag0.64528 (3)0.51283 (3)0.579194 (16)0.04387 (8)
I0.67657 (2)0.67819 (2)0.418646 (15)0.04704 (8)
P0.75790 (9)0.61782 (8)0.74849 (5)0.03498 (17)
N0.7116 (3)0.3242 (3)0.5233 (2)0.0496 (7)
C110.8282 (4)0.4979 (3)0.8258 (2)0.0420 (7)
H110.87020.5450.89260.05*
C120.6951 (4)0.3510 (4)0.8252 (3)0.0545 (9)
H12A0.64670.30710.75870.065*
H12B0.61710.3660.85250.065*
C130.7541 (6)0.2473 (5)0.8845 (3)0.0758 (12)
H13A0.7920.28630.95240.091*
H13B0.66870.15310.87990.091*
C140.8837 (6)0.2275 (5)0.8483 (3)0.0793 (13)
H14A0.92250.16630.88970.095*
H14B0.84270.17820.78280.095*
C151.0152 (5)0.3712 (5)0.8482 (3)0.0745 (12)
H15A1.09210.35520.82040.089*
H15B1.06470.4150.91470.089*
C160.9582 (4)0.4757 (4)0.7898 (3)0.0535 (9)
H16A0.92020.43720.72180.064*
H16B1.04460.56920.79480.064*
C210.6083 (4)0.6419 (3)0.8017 (2)0.0403 (7)
H210.51950.54730.78890.048*
C220.5502 (4)0.7498 (4)0.7480 (2)0.0523 (8)
H22A0.51760.71920.67870.063*
H22B0.63440.84570.75850.063*
C230.4137 (5)0.7582 (5)0.7837 (3)0.0680 (11)
H23A0.38420.83220.7520.082*
H23B0.32530.66530.76590.082*
C240.4547 (5)0.7946 (5)0.8927 (3)0.0713 (11)
H24A0.53360.89320.90960.086*
H24B0.36330.79120.91320.086*
C250.5139 (5)0.6903 (5)0.9458 (3)0.0643 (10)
H25A0.43060.59390.93550.077*
H25B0.54580.72131.0150.077*
C260.6511 (4)0.6823 (4)0.9116 (2)0.0512 (8)
H26A0.68190.60990.94470.061*
H26B0.73860.7760.92820.061*
C310.9209 (3)0.7958 (3)0.7758 (2)0.0386 (7)
C320.9355 (4)0.8901 (4)0.7032 (2)0.0473 (8)
H320.86370.86060.64350.057*
C331.0555 (5)1.0272 (4)0.7185 (3)0.0628 (10)
H331.06191.08990.66980.075*
C341.1638 (5)1.0704 (4)0.8043 (4)0.0713 (12)
H341.24641.16110.81340.086*
C351.1515 (5)0.9803 (4)0.8779 (3)0.0714 (12)
H351.22421.0110.93740.086*
C361.0303 (4)0.8434 (4)0.8631 (3)0.0583 (9)
H361.02270.78280.9130.07*
C410.6644 (5)0.1923 (4)0.5544 (3)0.0605 (10)
H410.5920.16940.59250.073*
C420.7168 (5)0.0881 (4)0.5333 (3)0.0694 (11)
H420.6801−0.00320.55620.083*
C430.8250 (5)0.1217 (5)0.4776 (3)0.0759 (12)
H430.86290.05360.4620.091*
C440.8749 (5)0.2560 (5)0.4461 (3)0.0742 (12)
H440.94910.28180.40920.089*
C450.8155 (4)0.3540 (4)0.4688 (3)0.0577 (9)
H450.84910.4450.44530.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag0.05080 (15)0.04133 (14)0.03791 (14)0.01641 (11)0.01097 (11)0.00158 (10)
I0.04314 (13)0.04213 (13)0.04845 (13)0.00716 (9)0.01405 (9)0.01362 (9)
P0.0372 (4)0.0322 (4)0.0333 (4)0.0111 (3)0.0089 (3)0.0039 (3)
N0.0534 (17)0.0422 (16)0.0540 (17)0.0210 (13)0.0105 (13)−0.0023 (13)
C110.0486 (18)0.0421 (18)0.0354 (16)0.0202 (15)0.0056 (13)0.0075 (13)
C120.069 (2)0.044 (2)0.058 (2)0.0240 (18)0.0271 (18)0.0196 (16)
C130.113 (4)0.055 (2)0.077 (3)0.043 (3)0.039 (3)0.033 (2)
C140.116 (4)0.065 (3)0.083 (3)0.061 (3)0.029 (3)0.025 (2)
C150.087 (3)0.082 (3)0.073 (3)0.059 (3)0.008 (2)0.010 (2)
C160.049 (2)0.056 (2)0.060 (2)0.0265 (18)0.0120 (16)0.0077 (17)
C210.0408 (16)0.0372 (17)0.0412 (17)0.0113 (14)0.0144 (13)0.0015 (13)
C220.058 (2)0.061 (2)0.048 (2)0.0319 (18)0.0179 (16)0.0101 (16)
C230.061 (2)0.089 (3)0.069 (3)0.045 (2)0.018 (2)0.012 (2)
C240.072 (3)0.083 (3)0.077 (3)0.041 (2)0.036 (2)0.006 (2)
C250.070 (3)0.074 (3)0.052 (2)0.023 (2)0.0297 (19)0.0040 (19)
C260.060 (2)0.058 (2)0.0408 (18)0.0264 (18)0.0168 (16)0.0084 (16)
C310.0359 (16)0.0343 (16)0.0443 (17)0.0119 (13)0.0106 (13)0.0023 (13)
C320.0523 (19)0.0419 (18)0.0453 (18)0.0133 (15)0.0170 (15)0.0050 (14)
C330.065 (2)0.044 (2)0.071 (3)0.0054 (18)0.029 (2)0.0085 (18)
C340.051 (2)0.041 (2)0.107 (4)0.0028 (17)0.019 (2)−0.005 (2)
C350.058 (2)0.049 (2)0.081 (3)0.0091 (19)−0.014 (2)−0.013 (2)
C360.057 (2)0.049 (2)0.055 (2)0.0164 (18)−0.0032 (17)0.0035 (17)
C410.066 (2)0.050 (2)0.069 (2)0.0227 (19)0.023 (2)0.0046 (18)
C420.083 (3)0.046 (2)0.080 (3)0.030 (2)0.013 (2)0.003 (2)
C430.080 (3)0.068 (3)0.094 (3)0.050 (3)0.012 (3)−0.009 (2)
C440.066 (3)0.071 (3)0.097 (3)0.035 (2)0.029 (2)−0.003 (2)
C450.053 (2)0.052 (2)0.069 (2)0.0200 (18)0.0172 (18)0.0013 (18)

Geometric parameters (Å, °)

Ag—N2.386 (3)C22—H22B0.97
Ag—P2.4436 (8)C23—C241.510 (5)
Ag—I2.8186 (4)C23—H23A0.97
Ag—Ii2.9449 (5)C23—H23B0.97
Ag—Agi3.1008 (6)C24—C251.503 (5)
I—Agi2.9449 (4)C24—H24A0.97
P—C311.827 (3)C24—H24B0.97
P—C111.847 (3)C25—C261.525 (5)
P—C211.847 (3)C25—H25A0.97
N—C411.329 (4)C25—H25B0.97
N—C451.334 (4)C26—H26A0.97
C11—C121.527 (5)C26—H26B0.97
C11—C161.532 (4)C31—C361.379 (4)
C11—H110.98C31—C321.391 (4)
C12—C131.536 (5)C32—C331.384 (5)
C12—H12A0.97C32—H320.93
C12—H12B0.97C33—C341.358 (6)
C13—C141.521 (6)C33—H330.93
C13—H13A0.97C34—C351.376 (6)
C13—H13B0.97C34—H340.93
C14—C151.501 (6)C35—C361.389 (5)
C14—H14A0.97C35—H350.93
C14—H14B0.97C36—H360.93
C15—C161.526 (5)C41—C421.374 (5)
C15—H15A0.97C41—H410.93
C15—H15B0.97C42—C431.378 (6)
C16—H16A0.97C42—H420.93
C16—H16B0.97C43—C441.353 (6)
C21—C261.528 (4)C43—H430.93
C21—C221.530 (4)C44—C451.376 (5)
C21—H210.98C44—H440.93
C22—C231.532 (5)C45—H450.93
C22—H22A0.97
N—Ag—P118.15 (7)C21—C22—H22A109.4
N—Ag—I98.31 (7)C23—C22—H22A109.4
P—Ag—I123.82 (2)C21—C22—H22B109.4
N—Ag—Ii95.85 (7)C23—C22—H22B109.4
P—Ag—Ii102.83 (2)H22A—C22—H22B108
I—Ag—Ii114.947 (10)C24—C23—C22111.6 (3)
N—Ag—Agi103.19 (7)C24—C23—H23A109.3
P—Ag—Agi135.80 (2)C22—C23—H23A109.3
I—Ag—Agi59.443 (10)C24—C23—H23B109.3
Ii—Ag—Agi55.505 (11)C22—C23—H23B109.3
Ag—I—Agi65.053 (10)H23A—C23—H23B108
C31—P—C11104.16 (14)C25—C24—C23111.7 (3)
C31—P—C21104.32 (14)C25—C24—H24A109.3
C11—P—C21105.76 (14)C23—C24—H24A109.3
C31—P—Ag119.07 (10)C25—C24—H24B109.3
C11—P—Ag112.57 (10)C23—C24—H24B109.3
C21—P—Ag109.89 (10)H24A—C24—H24B107.9
C41—N—C45116.9 (3)C24—C25—C26111.9 (3)
C41—N—Ag122.4 (2)C24—C25—H25A109.2
C45—N—Ag120.1 (2)C26—C25—H25A109.2
C12—C11—C16110.3 (3)C24—C25—H25B109.2
C12—C11—P110.5 (2)C26—C25—H25B109.2
C16—C11—P109.9 (2)H25A—C25—H25B107.9
C12—C11—H11108.7C25—C26—C21110.9 (3)
C16—C11—H11108.7C25—C26—H26A109.5
P—C11—H11108.7C21—C26—H26A109.5
C11—C12—C13110.9 (3)C25—C26—H26B109.5
C11—C12—H12A109.5C21—C26—H26B109.5
C13—C12—H12A109.5H26A—C26—H26B108.1
C11—C12—H12B109.5C36—C31—C32117.7 (3)
C13—C12—H12B109.5C36—C31—P124.7 (3)
H12A—C12—H12B108C32—C31—P117.6 (2)
C14—C13—C12111.5 (3)C33—C32—C31121.0 (3)
C14—C13—H13A109.3C33—C32—H32119.5
C12—C13—H13A109.3C31—C32—H32119.5
C14—C13—H13B109.3C34—C33—C32120.2 (4)
C12—C13—H13B109.3C34—C33—H33119.9
H13A—C13—H13B108C32—C33—H33119.9
C15—C14—C13111.6 (4)C33—C34—C35120.1 (3)
C15—C14—H14A109.3C33—C34—H34119.9
C13—C14—H14A109.3C35—C34—H34119.9
C15—C14—H14B109.3C34—C35—C36119.7 (4)
C13—C14—H14B109.3C34—C35—H35120.1
H14A—C14—H14B108C36—C35—H35120.1
C14—C15—C16111.4 (4)C31—C36—C35121.2 (4)
C14—C15—H15A109.4C31—C36—H36119.4
C16—C15—H15A109.4C35—C36—H36119.4
C14—C15—H15B109.4N—C41—C42123.5 (4)
C16—C15—H15B109.4N—C41—H41118.2
H15A—C15—H15B108C42—C41—H41118.2
C15—C16—C11112.1 (3)C41—C42—C43118.6 (4)
C15—C16—H16A109.2C41—C42—H42120.7
C11—C16—H16A109.2C43—C42—H42120.7
C15—C16—H16B109.2C44—C43—C42118.5 (4)
C11—C16—H16B109.2C44—C43—H43120.8
H16A—C16—H16B107.9C42—C43—H43120.8
C26—C21—C22110.5 (3)C43—C44—C45119.7 (4)
C26—C21—P116.8 (2)C43—C44—H44120.2
C22—C21—P110.4 (2)C45—C44—H44120.2
C26—C21—H21106.2N—C45—C44122.8 (4)
C22—C21—H21106.2N—C45—H45118.6
P—C21—H21106.2C44—C45—H45118.6
C21—C22—C23111.1 (3)
N—Ag—I—Agi100.46 (7)C31—P—C21—C26−61.2 (3)
P—Ag—I—Agi−127.34 (3)C11—P—C21—C2648.3 (3)
Ii—Ag—I—Agi0Ag—P—C21—C26170.1 (2)
N—Ag—P—C31102.47 (14)C31—P—C21—C2266.0 (3)
I—Ag—P—C31−21.28 (12)C11—P—C21—C22175.6 (2)
Ii—Ag—P—C31−153.61 (11)Ag—P—C21—C22−62.7 (2)
Agi—Ag—P—C31−100.40 (12)C26—C21—C22—C23−55.6 (4)
N—Ag—P—C11−19.81 (14)P—C21—C22—C23173.7 (3)
I—Ag—P—C11−143.57 (11)C21—C22—C23—C2454.9 (5)
Ii—Ag—P—C1184.11 (11)C22—C23—C24—C25−54.4 (5)
Agi—Ag—P—C11137.32 (11)C23—C24—C25—C2654.9 (5)
N—Ag—P—C21−137.39 (13)C24—C25—C26—C21−55.8 (4)
I—Ag—P—C2198.85 (11)C22—C21—C26—C2555.9 (4)
Ii—Ag—P—C21−33.48 (11)P—C21—C26—C25−176.9 (2)
Agi—Ag—P—C2119.73 (11)C11—P—C31—C36−28.3 (3)
P—Ag—N—C4168.4 (3)C21—P—C31—C3682.4 (3)
I—Ag—N—C41−155.9 (3)Ag—P—C31—C36−154.7 (3)
Ii—Ag—N—C41−39.6 (3)C11—P—C31—C32151.8 (2)
Agi—Ag—N—C41−95.5 (3)C21—P—C31—C32−97.5 (3)
P—Ag—N—C45−102.6 (3)Ag—P—C31—C3225.4 (3)
I—Ag—N—C4533.1 (3)C36—C31—C32—C33−0.3 (5)
Ii—Ag—N—C45149.5 (3)P—C31—C32—C33179.6 (3)
Agi—Ag—N—C4593.6 (3)C31—C32—C33—C341.8 (6)
C31—P—C11—C12169.8 (2)C32—C33—C34—C35−2.5 (6)
C21—P—C11—C1260.2 (3)C33—C34—C35—C361.7 (6)
Ag—P—C11—C12−59.8 (2)C32—C31—C36—C35−0.5 (5)
C31—P—C11—C16−68.2 (3)P—C31—C36—C35179.6 (3)
C21—P—C11—C16−177.8 (2)C34—C35—C36—C31−0.2 (6)
Ag—P—C11—C1662.2 (2)C45—N—C41—C42−0.1 (6)
C16—C11—C12—C1355.0 (4)Ag—N—C41—C42−171.3 (3)
P—C11—C12—C13176.8 (2)N—C41—C42—C430.5 (6)
C11—C12—C13—C14−55.7 (5)C41—C42—C43—C440.0 (7)
C12—C13—C14—C1555.5 (5)C42—C43—C44—C45−1.0 (7)
C13—C14—C15—C16−54.9 (5)C41—N—C45—C44−1.0 (6)
C14—C15—C16—C1155.2 (4)Ag—N—C45—C44170.5 (3)
C12—C11—C16—C15−55.1 (4)C43—C44—C45—N1.5 (7)
P—C11—C16—C15−177.2 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Table 2 Comparison of geometric parameters (Å, °) for selected [XAg(py)(P3)2] (X = Cl, Br or I)

XAg—XAg—XAg···AgAg—NAg—PX—Ag—XAg—I—Ag
Ia2.8186 (4)2.9449 (5)3.1008 (6)2.386 (3)2.4436 (8)114.947 (10)65.053 (10)
Ib2.8402 (12)2.8644 (8)3.1130 (18)2.392 (3)2.4489 (12)113.84 (4)66.16 (4)
Ic2.8142.8753.3432.4222.440108.0271.98
Brc2.7012.7333.4992.3912.41599.8580.15
Clc2.6142.6183.5072.4022.40095.8284.18

Notes: (a) This work; (b) Meijboom & Muller (2006); (c) Gotsis et al. (1989), extracted from the Cambridge Structural Database (Allen (2002), CSD CODES are VEFRUT for X = I, VEFRON for X = Br and VEFRIH for X = Cl.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2494).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Berners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743–1750.
  • Bowmaker, G. A., Effendy, Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2459–2465.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SMART, SADABS and SAINT Bruker AXS Inc., Mdison, Wisconsin, USA.
  • Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem.42, 907–912.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gotsis, S., Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem.42, 923–931.
  • Liu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem.102, 303–310. [PubMed]
  • Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev.253, 325–342.
  • Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191–m3193.
  • Muetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc.94, 6386–6391.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography