PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m372.
Published online 2009 March 6. doi:  10.1107/S1600536809006904
PMCID: PMC2969049

(2,2′-Dimethyl-4,4′-bi-1,3-thia­zole-κ2 N,N′)bis(thio­cyanato-κS)mercury(II)

Abstract

The HgII atom in the title compound, [Hg(SCN)2(C8H8N2S2)], is chelated by the bidentate heterocycle through the N atoms and is coordinated by the S atoms of two thiocyanate anions, resulting in a considerably distorted tetra­hedral coordination geometry.

Related literature

There are several examples of mercuric thio­cyanate–α,α′-dimine type of adducts which exist as four-coordinate, tetra­hedral mol­ecules. For the 4,4′,5,5′-tetra­methyl-2,2′-biimidazole adduct, see: Mahjoub et al. (2003 [triangle]); Morsali (2006 [triangle]). For the 2,2′-diamino-4,4′-bithia­zole adduct, see: Morsali et al. (2003 [triangle]). For the 2,2′-biquinoline adduct, see: Morsali et al. (2004 [triangle]); Ramazani et al. (2004 [triangle]). For the 2,2′-diphenyl-4,4′-bithia­zole adduct, see: Mahjoub & Morsali (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m372-scheme1.jpg

Experimental

Crystal data

  • [Hg(NCS)2(C8H8N2S2)]
  • M r = 513.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m372-efi1.jpg
  • a = 17.3764 (3) Å
  • b = 12.0534 (2) Å
  • c = 7.0601 (1) Å
  • β = 100.676 (1)°
  • V = 1453.10 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 11.16 mm−1
  • T = 118 K
  • 0.22 × 0.06 × 0.04 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.274, T max = 0.640
  • 10030 measured reflections
  • 3330 independent reflections
  • 2982 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.054
  • S = 1.04
  • 3330 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 1.17 e Å−3
  • Δρmin = −1.32 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: APEX2 (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006904/xu2488sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006904/xu2488Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

A solution of 2,2'-dimethyl-4,4'-bithiazole (0.13 g, 0.66 mmol) in methanol (10 ml) was added to a solution of mercuric thiocyanate (0.21 g, 0.66 mmol) in methanol (5 ml). Crystals were obtained by diffusing the methanol solution into DMSO for a week (yield: 80%; m.p. 456 K).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

The crystal diffracted strongly owing to the extremely heavy metal atom; however, its presence introduced severe absorption problems that could not be corrected analytically as the crystal did not have regular faces. The final difference Fourier map had a large peak/hole in the vicinity of the mercury atom.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of Hg(SCN)2(C10H8N2S2); ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius.

Crystal data

[Hg(NCS)2(C8H8N2S2)]F(000) = 960
Mr = 513.03Dx = 2.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4390 reflections
a = 17.3764 (3) Åθ = 2.4–28.3°
b = 12.0534 (2) ŵ = 11.16 mm1
c = 7.0601 (1) ÅT = 118 K
β = 100.676 (1)°Block, colorless
V = 1453.10 (4) Å30.22 × 0.06 × 0.04 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer3330 independent reflections
Radiation source: fine-focus sealed tube2982 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −22→22
Tmin = 0.274, Tmax = 0.640k = −15→15
10030 measured reflectionsl = −8→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0213P)2 + 2.1611P] where P = (Fo2 + 2Fc2)/3
3330 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = −1.31 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.272849 (8)0.578858 (12)0.74895 (2)0.01665 (6)
S10.37984 (5)0.20867 (8)0.65772 (15)0.0156 (2)
S20.03250 (6)0.34937 (8)0.73374 (16)0.0192 (2)
S30.34553 (7)0.58014 (9)1.07522 (18)0.0287 (3)
S40.20772 (7)0.68035 (9)0.46884 (17)0.0241 (2)
N10.30803 (18)0.3905 (3)0.6768 (5)0.0132 (7)
N20.16170 (18)0.4504 (3)0.7495 (5)0.0147 (7)
N30.4178 (2)0.7908 (3)1.1095 (6)0.0317 (9)
N40.1421 (2)0.4986 (3)0.2409 (6)0.0270 (8)
C10.4453 (2)0.4223 (3)0.6435 (7)0.0221 (9)
H1A0.42740.49000.57190.033*
H1B0.48070.38150.57550.033*
H1C0.47300.44210.77290.033*
C20.3765 (2)0.3514 (3)0.6592 (6)0.0149 (8)
C30.2837 (2)0.2028 (3)0.6837 (6)0.0148 (8)
H30.25490.13640.69120.018*
C40.2545 (2)0.3082 (3)0.6921 (6)0.0128 (8)
C50.1758 (2)0.3395 (3)0.7151 (5)0.0124 (7)
C60.1123 (2)0.2727 (3)0.7042 (6)0.0163 (8)
H60.11210.19490.68340.020*
C70.0890 (2)0.4686 (3)0.7608 (6)0.0158 (8)
C80.0558 (2)0.5793 (3)0.7950 (7)0.0207 (9)
H8A0.08310.60900.91860.031*
H8B−0.00010.57160.79800.031*
H8C0.06260.63010.69100.031*
C90.3879 (2)0.7054 (3)1.0890 (6)0.0201 (9)
C100.1696 (2)0.5709 (3)0.3354 (6)0.0188 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.01515 (8)0.01369 (8)0.01971 (10)−0.00045 (5)−0.00039 (6)−0.00147 (6)
S10.0154 (5)0.0132 (4)0.0188 (5)0.0017 (3)0.0049 (4)−0.0005 (4)
S20.0120 (5)0.0188 (5)0.0271 (6)−0.0016 (4)0.0043 (4)0.0004 (4)
S30.0367 (6)0.0183 (5)0.0249 (6)−0.0089 (4)−0.0108 (5)0.0058 (5)
S40.0294 (6)0.0140 (5)0.0254 (6)−0.0040 (4)−0.0044 (5)0.0029 (4)
N10.0118 (16)0.0143 (15)0.0133 (17)−0.0004 (12)0.0023 (12)−0.0001 (13)
N20.0144 (16)0.0150 (16)0.0147 (18)−0.0021 (12)0.0029 (13)0.0006 (13)
N30.036 (2)0.025 (2)0.031 (2)−0.0093 (17)−0.0018 (18)−0.0027 (18)
N40.028 (2)0.0228 (19)0.027 (2)−0.0006 (16)−0.0031 (16)−0.0014 (17)
C10.0134 (19)0.018 (2)0.035 (3)0.0010 (15)0.0055 (18)0.0017 (19)
C20.0156 (19)0.0140 (18)0.014 (2)0.0022 (14)0.0011 (15)−0.0001 (16)
C30.0145 (19)0.0154 (19)0.015 (2)−0.0006 (14)0.0037 (15)−0.0014 (16)
C40.0134 (18)0.0146 (18)0.0099 (19)0.0005 (14)0.0013 (14)0.0004 (15)
C50.0137 (18)0.0140 (18)0.0092 (19)0.0008 (14)0.0010 (14)0.0022 (15)
C60.0129 (18)0.0169 (19)0.020 (2)0.0005 (14)0.0050 (15)−0.0002 (17)
C70.0174 (19)0.0133 (18)0.017 (2)0.0022 (15)0.0037 (15)0.0009 (16)
C80.018 (2)0.018 (2)0.027 (2)0.0052 (16)0.0064 (17)−0.0023 (18)
C90.017 (2)0.021 (2)0.022 (2)0.0007 (16)0.0020 (16)−0.0014 (18)
C100.0113 (19)0.019 (2)0.026 (2)0.0012 (15)0.0019 (16)0.0042 (18)

Geometric parameters (Å, °)

Hg1—S32.413 (1)N4—C101.146 (6)
Hg1—S42.421 (1)C1—C21.490 (5)
Hg1—N12.430 (3)C1—H1A0.9800
Hg1—N22.476 (3)C1—H1B0.9800
S1—C21.721 (4)C1—H1C0.9800
S1—C31.716 (4)C3—C41.374 (5)
S2—C61.711 (4)C3—H30.9500
S2—C71.731 (4)C4—C51.455 (5)
S3—C91.675 (4)C5—C61.356 (5)
S4—C101.684 (4)C6—H60.9500
N1—C21.308 (5)C7—C81.491 (5)
N1—C41.379 (5)C8—H8A0.9800
N2—C71.299 (5)C8—H8B0.9800
N2—C51.389 (5)C8—H8C0.9800
N3—C91.150 (5)
S3—Hg1—S4149.25 (4)C1—C2—S1123.0 (3)
S3—Hg1—N195.66 (8)C4—C3—S1110.0 (3)
S3—Hg1—N2105.84 (8)C4—C3—H3125.0
S4—Hg1—N1113.49 (8)S1—C3—H3125.0
S4—Hg1—N294.04 (8)C3—C4—N1113.7 (3)
N1—Hg1—N269.1 (1)C3—C4—C5127.4 (3)
C2—S1—C390.37 (19)N1—C4—C5118.9 (3)
C6—S2—C790.33 (19)C6—C5—N2114.4 (3)
C9—S3—Hg1102.01 (16)C6—C5—C4127.7 (4)
C10—S4—Hg197.89 (15)N2—C5—C4117.9 (3)
C2—N1—C4112.8 (3)C5—C6—S2110.0 (3)
C2—N1—Hg1128.7 (3)C5—C6—H6125.0
C4—N1—Hg1117.1 (2)S2—C6—H6125.0
C7—N2—C5112.2 (3)N2—C7—C8124.8 (4)
C7—N2—Hg1131.5 (3)N2—C7—S2113.0 (3)
C5—N2—Hg1116.0 (2)C8—C7—S2122.2 (3)
C2—C1—H1A109.5C7—C8—H8A109.5
C2—C1—H1B109.5C7—C8—H8B109.5
H1A—C1—H1B109.5H8A—C8—H8B109.5
C2—C1—H1C109.5C7—C8—H8C109.5
H1A—C1—H1C109.5H8A—C8—H8C109.5
H1B—C1—H1C109.5H8B—C8—H8C109.5
N1—C2—C1123.8 (3)N3—C9—S3176.2 (4)
N1—C2—S1113.1 (3)N4—C10—S4177.9 (4)
S4—Hg1—S3—C9−25.10 (19)C2—S1—C3—C40.0 (3)
N1—Hg1—S3—C9136.75 (17)S1—C3—C4—N10.4 (4)
N2—Hg1—S3—C9−153.45 (17)S1—C3—C4—C5−179.5 (3)
S3—Hg1—S4—C10−173.66 (15)C2—N1—C4—C3−0.7 (5)
N1—Hg1—S4—C1026.10 (17)Hg1—N1—C4—C3−168.8 (3)
N2—Hg1—S4—C10−42.80 (16)C2—N1—C4—C5179.2 (3)
S3—Hg1—N1—C2−67.8 (3)Hg1—N1—C4—C511.1 (4)
S4—Hg1—N1—C2102.2 (3)C7—N2—C5—C6−1.3 (5)
N2—Hg1—N1—C2−172.6 (4)Hg1—N2—C5—C6−176.0 (3)
S3—Hg1—N1—C498.2 (3)C7—N2—C5—C4177.8 (3)
S4—Hg1—N1—C4−91.8 (3)Hg1—N2—C5—C43.1 (4)
N2—Hg1—N1—C4−6.6 (3)C3—C4—C5—C6−10.6 (7)
S3—Hg1—N2—C798.2 (4)N1—C4—C5—C6169.5 (4)
S4—Hg1—N2—C7−58.1 (4)C3—C4—C5—N2170.4 (4)
N1—Hg1—N2—C7−171.8 (4)N1—C4—C5—N2−9.5 (5)
S3—Hg1—N2—C5−88.4 (3)N2—C5—C6—S20.9 (4)
S4—Hg1—N2—C5115.3 (3)C4—C5—C6—S2−178.1 (3)
N1—Hg1—N2—C51.7 (2)C7—S2—C6—C5−0.3 (3)
C4—N1—C2—C1−178.9 (4)C5—N2—C7—C8−179.5 (4)
Hg1—N1—C2—C1−12.4 (6)Hg1—N2—C7—C8−5.8 (6)
C4—N1—C2—S10.6 (4)C5—N2—C7—S21.0 (4)
Hg1—N1—C2—S1167.11 (18)Hg1—N2—C7—S2174.69 (19)
C3—S1—C2—N1−0.3 (3)C6—S2—C7—N2−0.4 (3)
C3—S1—C2—C1179.2 (4)C6—S2—C7—C8−179.9 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2488).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Mahjoub, A. & Morsali, A. (2003). J. Coord. Chem.56, 779–785.
  • Mahjoub, A. R., Ramazani, A. & Morsali, A. (2003). Z. Kristallogr. New Cryst. Struct.218, 435–436.
  • Morsali, A. (2006). J. Coord. Chem.59, 1015–1024.
  • Morsali, A., Mahjoub, A. R. & Ramazani, A. (2004). J. Coord. Chem.57, 347–352.
  • Morsali, A., Payheghader, M., Poorheravi, M. R. & Jamali, F. (2003). Z. Anorg. Allg. Chem.629, 1627–1631.
  • Ramazani, A., Morsali, A. & Haji-Abolfath, A. (2004). Z. Kristallogr. New Cryst. Struct.219, 245–246.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography