PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o800.
Published online 2009 March 19. doi:  10.1107/S1600536809009623
PMCID: PMC2969047

4-Chloro-2-methyl-N-(2-methyl­phen­yl)­benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C14H14ClNO2S, the two aromatic rings are tilted relative to each other by 45.8 (1)°. In the crystal, inversion dimers linked by pairs of N—H(...)O hydrogen bonds occur.

Related literature

For related structures, see: Gelbrich et al. (2007 [triangle]); Gowda et al. (2009a [triangle],b [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o800-scheme1.jpg

Experimental

Crystal data

  • C14H14ClNO2S
  • M r = 295.77
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o800-efi1.jpg
  • a = 8.1200 (8) Å
  • b = 8.1832 (8) Å
  • c = 10.985 (1) Å
  • α = 95.81 (1)°
  • β = 96.92 (1)°
  • γ = 106.82 (1)°
  • V = 686.46 (11) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 3.86 mm−1
  • T = 299 K
  • 0.50 × 0.48 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.228, T max = 0.500
  • 2572 measured reflections
  • 2366 independent reflections
  • 2194 reflections with I > 2σ(I)
  • R int = 0.054
  • 3 standard reflections frequency: 120 min intensity decay: 2.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.235
  • S = 1.10
  • 2366 reflections
  • 178 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.82 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009623/bt2900sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009623/bt2900Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the present work, as part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides, the structure of 4-chloro-2-methyl-N-(2-methylphenyl)benzenesulfonamide has been determined (Gowda et al. 2009a,b). The conformations of the N—C bonds in the C—SO2—NH—C segment have trans and gauche torsion angles with the S=O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 73.0 (2). The ortho-methyl group in the sulfonyl benzene ring is oriented away from the S=O bonds and so also the ortho-methyl group in the anilino benzene ring from the N—H bond. The two benzene rings are tilted relative to each other by 45.8 (1)°, compared with the values of 86.6 (2)° (molecule 1) and 83.0 (2)° (molecule 2), in the two independent molecules of 4-chloro-2-methyl- N-(phenyl)benzenesulfonamide (Gowda et al., 2009a). The other bond parameters in the title compound are similar to those observed in 2,4-dimethyl-N-(phenyl)benzenesulfonamide (Gowda et al., 2009b) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of the molecules is characterized by N—H···O(S) hydrogen bonds (Table 1, Fig.2) .

Experimental

A solution of m-chlorotoluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chloro-2-methylbenzenesulfonylchloride was treated with o-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 4-chloro-2-methyl-N- (2-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a diffrerence map and its position was refined. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom) or Uiso(H) = 1.5 Ueq for methyl groups.

To improve considerably the values of R1, wR2, and GOOF these four reflections (-6 1 0, -2 3 5, 1 5 1, -2 -2 9) were omitted from the refinement.

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C14H14ClNO2SZ = 2
Mr = 295.77F(000) = 308
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.1200 (8) ÅCell parameters from 25 reflections
b = 8.1832 (8) Åθ = 5.7–25.2°
c = 10.985 (1) ŵ = 3.86 mm1
α = 95.81 (1)°T = 299 K
β = 96.92 (1)°Prism, colourless
γ = 106.82 (1)°0.50 × 0.48 × 0.18 mm
V = 686.46 (11) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer2194 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
graphiteθmax = 66.9°, θmin = 4.1°
ω/2θ scansh = −9→1
Absorption correction: psi-scan (North et al., 1968)k = −9→9
Tmin = 0.228, Tmax = 0.500l = −13→13
2572 measured reflections3 standard reflections every 120 min
2366 independent reflections intensity decay: 2.5%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.235w = 1/[σ2(Fo2) + (0.1867P)2 + 0.2192P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.003
2366 reflectionsΔρmax = 0.82 e Å3
178 parametersΔρmin = −0.63 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.35649 (13)0.29943 (14)0.56281 (9)0.0698 (5)
S10.70711 (9)−0.00610 (8)0.15793 (6)0.0388 (4)
O10.8587 (3)−0.0468 (3)0.2078 (2)0.0511 (6)
O20.5669 (3)−0.1383 (3)0.0812 (2)0.0518 (7)
N10.7667 (3)0.1454 (3)0.0718 (2)0.0408 (6)
H1N0.678 (5)0.160 (5)0.026 (3)0.049*
C10.6176 (4)0.0795 (4)0.2802 (3)0.0381 (7)
C20.7184 (4)0.1738 (4)0.3914 (3)0.0446 (8)
C30.6322 (5)0.2414 (4)0.4757 (3)0.0492 (8)
H30.69540.30750.54960.059*
C40.4541 (5)0.2123 (4)0.4518 (3)0.0471 (8)
C50.3557 (4)0.1194 (4)0.3436 (3)0.0483 (8)
H50.23610.10150.32840.058*
C60.4388 (4)0.0529 (4)0.2572 (3)0.0445 (7)
H60.3743−0.01050.18280.053*
C70.9159 (4)0.2918 (4)0.1137 (2)0.0370 (7)
C80.8982 (4)0.4545 (4)0.1516 (3)0.0417 (7)
C91.0502 (6)0.5921 (4)0.1866 (3)0.0580 (9)
H91.04200.70160.21000.070*
C101.2117 (6)0.5710 (5)0.1876 (4)0.0654 (11)
H101.31130.66480.21320.078*
C111.2262 (5)0.4090 (6)0.1501 (4)0.0655 (11)
H111.33570.39430.15110.079*
C121.0791 (5)0.2706 (5)0.1118 (3)0.0516 (8)
H121.08890.16290.08460.062*
C130.9139 (5)0.2097 (6)0.4271 (3)0.0607 (10)
H13A0.94010.10250.42580.073*
H13B0.95130.27410.50880.073*
H13C0.97360.27530.36910.073*
C140.7233 (5)0.4810 (4)0.1522 (4)0.0570 (10)
H14A0.64600.41740.07870.068*
H14B0.73520.60150.15460.068*
H14C0.67670.44100.22390.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0723 (8)0.0846 (8)0.0629 (7)0.0384 (6)0.0258 (5)−0.0018 (5)
S10.0430 (6)0.0280 (5)0.0466 (5)0.0131 (3)0.0107 (3)−0.0002 (3)
O10.0554 (14)0.0426 (12)0.0650 (14)0.0270 (10)0.0156 (11)0.0088 (10)
O20.0570 (15)0.0327 (11)0.0614 (14)0.0106 (10)0.0117 (11)−0.0058 (9)
N10.0440 (15)0.0362 (13)0.0422 (13)0.0137 (11)0.0079 (10)−0.0001 (10)
C10.0431 (17)0.0308 (14)0.0427 (15)0.0129 (11)0.0114 (12)0.0052 (11)
C20.0422 (18)0.0510 (17)0.0449 (16)0.0191 (13)0.0091 (13)0.0103 (13)
C30.052 (2)0.0490 (18)0.0446 (16)0.0155 (14)0.0073 (14)−0.0003 (13)
C40.053 (2)0.0497 (18)0.0484 (17)0.0255 (15)0.0195 (14)0.0119 (14)
C50.0429 (18)0.0519 (18)0.0543 (18)0.0202 (14)0.0119 (14)0.0052 (14)
C60.0441 (18)0.0426 (16)0.0473 (16)0.0147 (13)0.0081 (13)0.0037 (12)
C70.0427 (16)0.0365 (14)0.0328 (13)0.0119 (12)0.0113 (11)0.0043 (10)
C80.058 (2)0.0339 (14)0.0338 (14)0.0128 (13)0.0117 (12)0.0031 (11)
C90.075 (3)0.0388 (17)0.0516 (18)0.0032 (15)0.0113 (16)0.0070 (13)
C100.059 (2)0.058 (2)0.062 (2)−0.0077 (17)0.0005 (17)0.0193 (17)
C110.041 (2)0.082 (3)0.073 (2)0.0107 (18)0.0111 (16)0.032 (2)
C120.049 (2)0.0553 (19)0.0581 (19)0.0217 (15)0.0186 (15)0.0146 (15)
C130.043 (2)0.080 (3)0.0544 (19)0.0199 (17)−0.0005 (15)−0.0072 (17)
C140.074 (2)0.0400 (17)0.069 (2)0.0274 (17)0.0329 (19)0.0081 (15)

Geometric parameters (Å, °)

Cl1—C41.734 (3)C7—C121.388 (5)
S1—O11.427 (2)C7—C81.407 (4)
S1—O21.431 (2)C8—C91.390 (5)
S1—N11.633 (3)C8—C141.498 (5)
S1—C11.778 (3)C9—C101.370 (6)
N1—C71.424 (4)C9—H90.9300
N1—H1N0.87 (4)C10—C111.391 (7)
C1—C61.392 (5)C10—H100.9300
C1—C21.400 (4)C11—C121.373 (5)
C2—C31.389 (5)C11—H110.9300
C2—C131.522 (5)C12—H120.9300
C3—C41.383 (5)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.366 (5)C13—H13C0.9600
C5—C61.383 (5)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
O1—S1—O2119.17 (14)C8—C7—N1121.0 (3)
O1—S1—N1108.06 (14)C9—C8—C7117.4 (3)
O2—S1—N1105.21 (14)C9—C8—C14120.8 (3)
O1—S1—C1109.71 (14)C7—C8—C14121.9 (3)
O2—S1—C1106.93 (14)C10—C9—C8121.9 (3)
N1—S1—C1107.12 (13)C10—C9—H9119.1
C7—N1—S1121.1 (2)C8—C9—H9119.1
C7—N1—H1N118 (2)C9—C10—C11119.8 (3)
S1—N1—H1N112 (3)C9—C10—H10120.1
C6—C1—C2121.0 (3)C11—C10—H10120.1
C6—C1—S1115.7 (2)C12—C11—C10120.1 (4)
C2—C1—S1123.3 (2)C12—C11—H11119.9
C3—C2—C1116.9 (3)C10—C11—H11119.9
C3—C2—C13117.4 (3)C11—C12—C7119.8 (3)
C1—C2—C13125.6 (3)C11—C12—H12120.1
C4—C3—C2121.3 (3)C7—C12—H12120.1
C4—C3—H3119.4C2—C13—H13A109.5
C2—C3—H3119.4C2—C13—H13B109.5
C5—C4—C3121.7 (3)H13A—C13—H13B109.5
C5—C4—Cl1120.0 (3)C2—C13—H13C109.5
C3—C4—Cl1118.3 (3)H13A—C13—H13C109.5
C4—C5—C6118.1 (3)H13B—C13—H13C109.5
C4—C5—H5120.9C8—C14—H14A109.5
C6—C5—H5120.9C8—C14—H14B109.5
C5—C6—C1120.9 (3)H14A—C14—H14B109.5
C5—C6—H6119.6C8—C14—H14C109.5
C1—C6—H6119.6H14A—C14—H14C109.5
C12—C7—C8121.0 (3)H14B—C14—H14C109.5
C12—C7—N1118.0 (3)
O1—S1—N1—C7−45.5 (2)Cl1—C4—C5—C6179.7 (2)
O2—S1—N1—C7−173.8 (2)C4—C5—C6—C10.2 (5)
C1—S1—N1—C772.7 (2)C2—C1—C6—C50.2 (5)
O1—S1—C1—C6−152.0 (2)S1—C1—C6—C5−177.4 (2)
O2—S1—C1—C6−21.4 (3)S1—N1—C7—C1275.9 (3)
N1—S1—C1—C690.9 (2)S1—N1—C7—C8−106.4 (3)
O1—S1—C1—C230.4 (3)C12—C7—C8—C90.1 (4)
O2—S1—C1—C2161.0 (3)N1—C7—C8—C9−177.5 (3)
N1—S1—C1—C2−86.6 (3)C12—C7—C8—C14178.9 (3)
C6—C1—C2—C3−1.1 (5)N1—C7—C8—C141.3 (4)
S1—C1—C2—C3176.3 (2)C7—C8—C9—C10−1.6 (5)
C6—C1—C2—C13179.4 (3)C14—C8—C9—C10179.5 (3)
S1—C1—C2—C13−3.1 (5)C8—C9—C10—C111.5 (6)
C1—C2—C3—C41.8 (5)C9—C10—C11—C120.3 (6)
C13—C2—C3—C4−178.7 (3)C10—C11—C12—C7−1.8 (5)
C2—C3—C4—C5−1.5 (5)C8—C7—C12—C111.6 (5)
C2—C3—C4—Cl1179.3 (2)N1—C7—C12—C11179.3 (3)
C3—C4—C5—C60.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (4)2.14 (4)2.993 (4)167 (3)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2900).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o476. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o576. [PMC free article] [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography