PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o874.
Published online 2009 March 25. doi:  10.1107/S1600536809010307
PMCID: PMC2969045

2-(4-Chloro­phen­yl)-3-p-tolyl-1,3-thia­zolidin-4-one

Abstract

The title compound, C16H14ClNOS, a potent anti­bacterial chemical, features a dihedral angle of 49.4 (1)° between the 4-tolyl and thia­zolidinone rings, and a dihedral angle of 87.2 (5)° between the thia­zolidinone and 4-chloro­phenyl rings.

Related literature

For the synthesis, see: Srivastava et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o874-scheme1.jpg

Experimental

Crystal data

  • C16H14ClNOS
  • M r = 303.79
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o874-efi1.jpg
  • a = 12.1591 (4) Å
  • b = 13.0708 (4) Å
  • c = 18.5125 (7) Å
  • V = 2942.18 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 296 K
  • 0.40 × 0.35 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.85, T max = 0.92
  • 16959 measured reflections
  • 3377 independent reflections
  • 2205 reflections with I > 2˘I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.115
  • S = 1.02
  • 3377 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010307/ng2565sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010307/ng2565Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by Jiangsu Key Laboratory of the Chemistry of Low-Dimensional Materials.

supplementary crystallographic information

Comment

4-thiazolidinone ring system comprises the broad spectrum for a number of biologically active compounds.In recent years, 4-thiazolidinones are the most extensively investigated class of compounds, which exhibits various biological activities, such as anticancer, antitubercular, antibacterial and herbicidal activities. In view of these properties and in a continuation of our interest in the chemistry of 4-thiazolidinones, we have attempted to synthesize a series of 4-thiazolidinone derivatives, some of which have comparatively high antibacterial activity. The crystal structure determination of the title compound,(I), was undertaken to investigate the relationship between structure and antibacterial activity(Fig. 1). The molecular conformation is described by the dihedral angle between 4-methylbenzene ring and thiazolidinone ring of 49.4 (1)° and the dihedral angle between thiazolidinone ring and 4-chlorobenzene ring of 87.2 (5)°.

Experimental

Compound (I) was synthesized according to the procedure of Tumul Srivastava et al. (2002). A crystal of (I) suitable for X-ray analysis was grown from an ethanol solution by slow evaporation at room temperature.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic), 0.99 (methylene), 1.00 (methylidyne) and 0.98 Å(methyl), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering schem. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C16H14ClNOSF(000) = 1264
Mr = 303.79Dx = 1.372 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2211 reflections
a = 12.1591 (4) Åθ = 2.5–25.0°
b = 13.0708 (4) ŵ = 0.40 mm1
c = 18.5125 (7) ÅT = 296 K
V = 2942.18 (17) Å3Plate, colorless
Z = 80.40 × 0.35 × 0.20 mm

Data collection

Bruker APEXII area-detector diffractometer3377 independent reflections
Radiation source: fine-focus sealed tube2205 reflections with I > 2˘I)
graphiteRint = 0.058
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 2.2°
w\ scansh = −14→15
Absorption correction: multi-scan (SADABS; Bruker, 2000)k = −16→16
Tmin = 0.85, Tmax = 0.92l = −24→24
16959 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0467P)2 + 0.6312P] where P = (Fo2 + 2Fc2)/3
3377 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.66878 (17)0.93240 (14)0.34463 (11)0.0402 (5)
H10.61050.95350.31120.048*
C20.85314 (18)0.96718 (14)0.30086 (12)0.0399 (5)
C30.83681 (18)1.05986 (15)0.34764 (13)0.0467 (6)
H3A0.83101.12070.31790.056*
H3B0.89901.06810.38000.056*
C40.62581 (16)0.85053 (14)0.39467 (11)0.0368 (5)
C50.69556 (17)0.79865 (16)0.44122 (12)0.0434 (5)
H50.77080.81120.43910.052*
C60.65582 (18)0.72901 (15)0.49046 (12)0.0441 (5)
H60.70330.69490.52170.053*
C70.54441 (18)0.71086 (15)0.49257 (12)0.0429 (5)
C80.47397 (18)0.75886 (19)0.44628 (14)0.0546 (6)
H80.39900.74480.44780.065*
C90.51497 (18)0.82863 (18)0.39704 (13)0.0508 (6)
H90.46730.86110.36520.061*
C100.76107 (17)0.81131 (14)0.25927 (11)0.0380 (5)
C110.84795 (18)0.74324 (15)0.25858 (13)0.0468 (5)
H110.90900.75460.28770.056*
C120.8436 (2)0.65774 (16)0.21407 (14)0.0552 (6)
H120.90300.61300.21300.066*
C130.7532 (2)0.63756 (16)0.17140 (12)0.0519 (6)
C140.6660 (2)0.70546 (16)0.17427 (12)0.0510 (6)
H140.60370.69290.14650.061*
C150.66950 (18)0.79175 (15)0.21761 (12)0.0433 (5)
H150.61010.83650.21860.052*
C160.7492 (3)0.54493 (19)0.12222 (16)0.0780 (9)
H16A0.81760.50850.12520.117*
H16B0.73720.56680.07330.117*
H16C0.69020.50080.13700.117*
Cl10.49492 (5)0.62309 (5)0.55527 (4)0.0680 (2)
N10.76603 (13)0.90125 (11)0.30369 (9)0.0371 (4)
O10.93527 (13)0.95428 (11)0.26448 (9)0.0529 (4)
S10.71335 (6)1.04265 (4)0.39863 (3)0.0568 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0406 (12)0.0425 (11)0.0373 (12)0.0056 (9)0.0029 (10)0.0017 (9)
C20.0395 (12)0.0439 (11)0.0364 (12)0.0001 (9)−0.0021 (10)0.0069 (9)
C30.0489 (13)0.0427 (11)0.0484 (14)−0.0029 (9)−0.0055 (11)0.0022 (10)
C40.0358 (11)0.0427 (10)0.0319 (11)0.0016 (8)0.0025 (9)−0.0025 (9)
C50.0305 (11)0.0568 (12)0.0429 (13)−0.0040 (9)−0.0001 (10)0.0055 (10)
C60.0405 (13)0.0533 (12)0.0385 (13)0.0006 (9)−0.0027 (10)0.0038 (10)
C70.0431 (13)0.0470 (11)0.0385 (12)−0.0054 (9)0.0083 (10)−0.0005 (9)
C80.0306 (12)0.0760 (15)0.0571 (16)−0.0067 (10)0.0021 (11)0.0084 (13)
C90.0403 (13)0.0668 (14)0.0452 (14)0.0062 (10)−0.0020 (11)0.0077 (12)
C100.0431 (12)0.0387 (10)0.0322 (11)−0.0010 (8)0.0073 (10)0.0046 (8)
C110.0419 (13)0.0472 (11)0.0512 (15)0.0024 (9)0.0064 (11)0.0056 (10)
C120.0616 (16)0.0423 (11)0.0616 (17)0.0112 (10)0.0206 (14)0.0076 (11)
C130.0736 (17)0.0411 (11)0.0409 (13)−0.0031 (11)0.0150 (13)0.0008 (10)
C140.0659 (16)0.0492 (12)0.0379 (13)−0.0041 (11)−0.0044 (12)0.0001 (10)
C150.0489 (13)0.0429 (11)0.0381 (12)0.0045 (9)−0.0015 (10)0.0013 (9)
C160.120 (2)0.0507 (14)0.0634 (18)0.0008 (15)0.0190 (18)−0.0083 (13)
Cl10.0592 (4)0.0747 (4)0.0701 (5)−0.0107 (3)0.0135 (3)0.0234 (4)
N10.0368 (9)0.0405 (8)0.0339 (9)−0.0006 (7)0.0038 (8)−0.0005 (7)
O10.0424 (9)0.0556 (9)0.0606 (11)−0.0043 (7)0.0109 (8)0.0000 (8)
S10.0723 (5)0.0469 (3)0.0513 (4)−0.0062 (3)0.0169 (3)−0.0087 (3)

Geometric parameters (Å, °)

C1—N11.462 (2)C8—C91.382 (3)
C1—C41.509 (3)C8—H80.9300
C1—S11.836 (2)C9—H90.9300
C1—H10.9800C10—C151.378 (3)
C2—O11.216 (2)C10—C111.381 (3)
C2—N11.366 (3)C10—N11.436 (2)
C2—C31.502 (3)C11—C121.390 (3)
C3—S11.787 (2)C11—H110.9300
C3—H3A0.9700C12—C131.378 (3)
C3—H3B0.9700C12—H120.9300
C4—C91.378 (3)C13—C141.384 (3)
C4—C51.386 (3)C13—C161.516 (3)
C5—C61.376 (3)C14—C151.385 (3)
C5—H50.9300C14—H140.9300
C6—C71.376 (3)C15—H150.9300
C6—H60.9300C16—H16A0.9600
C7—C81.364 (3)C16—H16B0.9600
C7—Cl11.740 (2)C16—H16C0.9600
N1—C1—C4113.63 (15)C4—C9—H9119.7
N1—C1—S1105.19 (13)C8—C9—H9119.7
C4—C1—S1108.94 (14)C15—C10—C11119.55 (19)
N1—C1—H1109.6C15—C10—N1120.41 (18)
C4—C1—H1109.6C11—C10—N1120.04 (19)
S1—C1—H1109.6C10—C11—C12119.6 (2)
O1—C2—N1124.76 (19)C10—C11—H11120.2
O1—C2—C3122.66 (19)C12—C11—H11120.2
N1—C2—C3112.58 (19)C13—C12—C11121.6 (2)
C2—C3—S1108.30 (14)C13—C12—H12119.2
C2—C3—H3A110.0C11—C12—H12119.2
S1—C3—H3A110.0C12—C13—C14117.8 (2)
C2—C3—H3B110.0C12—C13—C16121.6 (2)
S1—C3—H3B110.0C14—C13—C16120.7 (3)
H3A—C3—H3B108.4C13—C14—C15121.4 (2)
C9—C4—C5118.47 (19)C13—C14—H14119.3
C9—C4—C1120.36 (19)C15—C14—H14119.3
C5—C4—C1121.12 (18)C10—C15—C14120.0 (2)
C6—C5—C4121.38 (19)C10—C15—H15120.0
C6—C5—H5119.3C14—C15—H15120.0
C4—C5—H5119.3C13—C16—H16A109.5
C5—C6—C7118.6 (2)C13—C16—H16B109.5
C5—C6—H6120.7H16A—C16—H16B109.5
C7—C6—H6120.7C13—C16—H16C109.5
C8—C7—C6121.4 (2)H16A—C16—H16C109.5
C8—C7—Cl1120.35 (17)H16B—C16—H16C109.5
C6—C7—Cl1118.25 (17)C2—N1—C10121.80 (17)
C7—C8—C9119.4 (2)C2—N1—C1118.11 (16)
C7—C8—H8120.3C10—N1—C1119.39 (15)
C9—C8—H8120.3C3—S1—C193.39 (9)
C4—C9—C8120.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2565).

References

  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Srivastava, T., Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619–7624.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography