PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o877.
Published online 2009 March 28. doi:  10.1107/S1600536809010459
PMCID: PMC2969044

N-(3,4-Dimethyl­phen­yl)-4-methyl­benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C15H17NO2S, the conformations of the N—C bond in the C—SO2—NH—C segment are trans and gauche, respectively, with respect to the S=O bonds. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of −61.8 (2)°. Furthermore, the conformation of the N—H bond and the 3-methyl group in the aniline benzene ring are nearly anti to each other. The dihedral angle between the benzene rings is 47.8 (1)°. In the crystal, N—H(...)O hydrogen bonds link the molecules into chains.

Related literature

For the preparation of the compound, see: Shetty & Gowda (2005 [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Gowda et al. (2008a [triangle],b [triangle]; 2009 [triangle]); Perlovich et al. (2006 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-0o877-scheme1.jpg

Experimental

Crystal data

  • C15H17NO2S
  • M r = 275.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o877-efi1.jpg
  • a = 9.2528 (7) Å
  • b = 15.329 (1) Å
  • c = 10.4469 (7) Å
  • β = 102.558 (7)°
  • V = 1446.30 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 299 K
  • 0.45 × 0.40 × 0.34 mm

Data collection

  • Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.907, T max = 0.929
  • 10438 measured reflections
  • 2902 independent reflections
  • 2360 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.127
  • S = 1.06
  • 2902 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010459/fl2240sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010459/fl2240Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of our study of substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008a; b; 2009), in the present work, the structure of 4-methyl-N-(3,4-dimethylphenyl)benzenesulfonamide (N34DMP4MBSA) has been determined. The conformations of the N—C bond in the C—SO2—NH—C segment of the structure are "trans" and "gauche" with respect to the S=O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -61.8 (2). The conformation of the N—H bond and the meta-methyl group in the anilino benzene ring are nearly anti to each other. The two benzene rings in the title compound are tilted relative to each other by 47.8 (1)°. The other bond parameters in N34DMP4MBSA are similar to those observed in N-(2,6-dimethylphenyl)-benzenesulfonamide (Gowda et al., 2008a), N-(2,3-dimethylphenyl)- benzenesulfonamide (Gowda et al., 2009), N-(3,5-dichlorophenyl)- benzenesulfonamide (Gowda et al., 2008b)) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The N—H···O hydrogen bonds (Table 1) pack the molecules into infinite chains in the direction of a- axis (Fig. 2).

Experimental

The solution of toluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 3,4-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant 4-methyl-N-(3,4-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). For methyl group Uiso(H) = 1.5 Ueq.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C15H17NO2SF(000) = 584
Mr = 275.36Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5065 reflections
a = 9.2528 (7) Åθ = 2.3–27.3°
b = 15.329 (1) ŵ = 0.22 mm1
c = 10.4469 (7) ÅT = 299 K
β = 102.558 (7)°Prism, colourless
V = 1446.30 (17) Å30.45 × 0.40 × 0.34 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer2902 independent reflections
Radiation source: fine-focus sealed tube2360 reflections with I > 2σ(I)
graphiteRint = 0.014
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)h = −11→11
Tmin = 0.907, Tmax = 0.929k = −19→19
10438 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0676P)2 + 0.5487P] where P = (Fo2 + 2Fc2)/3
2902 reflections(Δ/σ)max = 0.014
175 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.48 e Å3

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0832 (2)0.11183 (12)0.41984 (18)0.0420 (4)
C20.2056 (3)0.08904 (16)0.5149 (2)0.0618 (6)
H20.23820.12490.58720.074*
C30.2793 (3)0.01242 (17)0.5015 (2)0.0676 (7)
H30.3623−0.00270.56530.081*
C40.2330 (3)−0.04188 (14)0.3963 (2)0.0539 (5)
C50.1119 (3)−0.01764 (17)0.3024 (3)0.0703 (7)
H50.0800−0.05340.22990.084*
C60.0366 (3)0.05845 (16)0.3129 (2)0.0640 (6)
H6−0.04540.07370.24810.077*
C70.2234 (2)0.30486 (12)0.40062 (17)0.0395 (4)
C80.2693 (2)0.35604 (12)0.51153 (18)0.0457 (5)
H80.19950.37690.55600.055*
C90.4176 (2)0.37672 (12)0.55727 (19)0.0485 (5)
C100.5221 (2)0.34840 (13)0.4878 (2)0.0489 (5)
C110.4742 (2)0.29740 (14)0.3767 (2)0.0522 (5)
H110.54300.27770.33040.063*
C120.3270 (2)0.27524 (13)0.33332 (19)0.0468 (5)
H120.29760.24060.25920.056*
C130.3163 (3)−0.12473 (17)0.3828 (3)0.0770 (8)
H13A0.3446−0.15260.46680.092*
H13B0.4033−0.11110.35070.092*
H13C0.2540−0.16320.32230.092*
C140.4651 (3)0.42967 (18)0.6811 (2)0.0709 (7)
H14A0.38030.44260.71670.085*
H14B0.50980.48310.66140.085*
H14C0.53550.39690.74400.085*
C150.6836 (3)0.37166 (18)0.5317 (3)0.0703 (7)
H15A0.72400.34350.61380.084*
H15B0.69350.43370.54220.084*
H15C0.73610.35250.46700.084*
N10.06920 (18)0.28438 (10)0.35435 (15)0.0435 (4)
H1N0.01810.31060.28670.052*
O1−0.15757 (16)0.20372 (11)0.35826 (15)0.0568 (4)
O20.02022 (16)0.23588 (11)0.56602 (12)0.0528 (4)
S1−0.00854 (5)0.21086 (3)0.43102 (4)0.04195 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0434 (10)0.0444 (10)0.0383 (9)−0.0001 (8)0.0092 (8)0.0027 (8)
C20.0734 (15)0.0639 (14)0.0413 (11)0.0187 (12)−0.0029 (10)−0.0019 (10)
C30.0755 (16)0.0693 (15)0.0529 (13)0.0232 (13)0.0030 (12)0.0091 (11)
C40.0597 (13)0.0427 (10)0.0653 (13)0.0000 (9)0.0264 (11)0.0074 (10)
C50.0685 (15)0.0616 (14)0.0763 (17)−0.0044 (12)0.0057 (13)−0.0236 (12)
C60.0542 (13)0.0652 (14)0.0641 (14)0.0050 (11)−0.0057 (11)−0.0163 (11)
C70.0498 (11)0.0377 (9)0.0295 (8)0.0055 (8)0.0058 (7)0.0037 (7)
C80.0596 (12)0.0420 (10)0.0360 (9)0.0058 (9)0.0114 (8)−0.0013 (8)
C90.0655 (13)0.0388 (10)0.0375 (10)−0.0009 (9)0.0030 (9)0.0002 (8)
C100.0520 (11)0.0421 (10)0.0486 (11)0.0011 (9)0.0022 (9)0.0074 (9)
C110.0552 (12)0.0548 (12)0.0492 (12)0.0074 (10)0.0167 (10)0.0008 (9)
C120.0583 (12)0.0490 (11)0.0326 (9)0.0028 (9)0.0085 (8)−0.0041 (8)
C130.0853 (18)0.0517 (13)0.101 (2)0.0086 (13)0.0348 (16)0.0037 (13)
C140.0883 (18)0.0665 (15)0.0534 (13)−0.0132 (13)0.0054 (12)−0.0177 (11)
C150.0580 (14)0.0666 (15)0.0796 (17)−0.0008 (12)0.0001 (12)0.0024 (13)
N10.0493 (9)0.0485 (9)0.0294 (7)0.0078 (7)0.0015 (7)0.0064 (6)
O10.0413 (8)0.0772 (11)0.0495 (8)0.0071 (7)0.0042 (6)−0.0027 (7)
O20.0600 (9)0.0693 (9)0.0299 (7)0.0067 (7)0.0118 (6)−0.0016 (6)
S10.0414 (3)0.0537 (3)0.0298 (3)0.0059 (2)0.00563 (18)−0.00009 (18)

Geometric parameters (Å, °)

C1—C61.376 (3)C10—C111.389 (3)
C1—C21.379 (3)C10—C151.507 (3)
C1—S11.7557 (19)C11—C121.381 (3)
C2—C31.380 (3)C11—H110.9300
C2—H20.9300C12—H120.9300
C3—C41.371 (3)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.370 (3)C13—H13C0.9600
C4—C131.508 (3)C14—H14A0.9600
C5—C61.375 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—C121.382 (3)C15—H15B0.9600
C7—C81.387 (3)C15—H15C0.9600
C7—N11.438 (2)N1—S11.6369 (17)
C8—C91.388 (3)N1—H1N0.8600
C8—H80.9300O1—S11.4267 (15)
C9—C101.398 (3)O2—S11.4296 (13)
C9—C141.509 (3)
C6—C1—C2119.82 (19)C10—C11—H11119.2
C6—C1—S1119.82 (16)C11—C12—C7119.70 (18)
C2—C1—S1120.30 (15)C11—C12—H12120.1
C1—C2—C3119.3 (2)C7—C12—H12120.1
C1—C2—H2120.4C4—C13—H13A109.5
C3—C2—H2120.4C4—C13—H13B109.5
C4—C3—C2121.5 (2)H13A—C13—H13B109.5
C4—C3—H3119.3C4—C13—H13C109.5
C2—C3—H3119.3H13A—C13—H13C109.5
C5—C4—C3118.3 (2)H13B—C13—H13C109.5
C5—C4—C13121.1 (2)C9—C14—H14A109.5
C3—C4—C13120.6 (2)C9—C14—H14B109.5
C4—C5—C6121.5 (2)H14A—C14—H14B109.5
C4—C5—H5119.3C9—C14—H14C109.5
C6—C5—H5119.3H14A—C14—H14C109.5
C5—C6—C1119.6 (2)H14B—C14—H14C109.5
C5—C6—H6120.2C10—C15—H15A109.5
C1—C6—H6120.2C10—C15—H15B109.5
C12—C7—C8119.37 (19)H15A—C15—H15B109.5
C12—C7—N1120.27 (17)C10—C15—H15C109.5
C8—C7—N1120.34 (17)H15A—C15—H15C109.5
C7—C8—C9121.13 (19)H15B—C15—H15C109.5
C7—C8—H8119.4C7—N1—S1119.68 (12)
C9—C8—H8119.4C7—N1—H1N120.2
C8—C9—C10119.58 (18)S1—N1—H1N120.2
C8—C9—C14120.0 (2)O1—S1—O2119.82 (9)
C10—C9—C14120.4 (2)O1—S1—N1105.59 (9)
C11—C10—C9118.52 (19)O2—S1—N1106.90 (9)
C11—C10—C15120.1 (2)O1—S1—C1108.88 (9)
C9—C10—C15121.3 (2)O2—S1—C1107.97 (9)
C12—C11—C10121.7 (2)N1—S1—C1107.01 (9)
C12—C11—H11119.2
C6—C1—C2—C3−0.4 (4)C14—C9—C10—C15−1.7 (3)
S1—C1—C2—C3−177.58 (19)C9—C10—C11—C120.7 (3)
C1—C2—C3—C4−0.4 (4)C15—C10—C11—C12−179.7 (2)
C2—C3—C4—C51.0 (4)C10—C11—C12—C70.6 (3)
C2—C3—C4—C13179.2 (2)C8—C7—C12—C11−0.4 (3)
C3—C4—C5—C6−0.8 (4)N1—C7—C12—C11178.19 (17)
C13—C4—C5—C6−179.0 (2)C12—C7—N1—S1105.46 (18)
C4—C5—C6—C10.0 (4)C8—C7—N1—S1−75.9 (2)
C2—C1—C6—C50.6 (4)C7—N1—S1—O1−177.68 (14)
S1—C1—C6—C5177.8 (2)C7—N1—S1—O253.68 (16)
C12—C7—C8—C9−1.1 (3)C7—N1—S1—C1−61.80 (15)
N1—C7—C8—C9−179.75 (16)C6—C1—S1—O126.4 (2)
C7—C8—C9—C102.5 (3)C2—C1—S1—O1−156.35 (18)
C7—C8—C9—C14−177.67 (19)C6—C1—S1—O2157.99 (18)
C8—C9—C10—C11−2.3 (3)C2—C1—S1—O2−24.8 (2)
C14—C9—C10—C11177.9 (2)C6—C1—S1—N1−87.25 (19)
C8—C9—C10—C15178.14 (19)C2—C1—S1—N189.97 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.422.963 (2)122

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2240).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o2190. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o366. [PMC free article] [PubMed]
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography