PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m360.
Published online 2009 March 6. doi:  10.1107/S1600536809006965
PMCID: PMC2969040

catena-Poly[[diaqua­zinc(II)]-μ-4,4′-(methyl­enedioxy)­dibenzoato]

Abstract

In the title complex, [Zn(C15H10O6)(H2O)2]n, the ZnII atom is located on a twofold rotation axis and exhibits a distorted tetrahedral coordination environment defined by two O atoms from two 4,4′-(methyl­enedioxy)­dibenzoate ligands and two O atoms from two coordinated water mol­ecules. In the crystal structure, mol­ecules are linked into a three-dimensional framework by O—H(...)O hydrogen bonds and C—H(...)π inter­actions.

Related literature

For the potential properties and structural topologies of metal-organic complexes involving polycarboxyl­ate ligands, see: Chen & Liu (2002 [triangle]); Han et al. (2009 [triangle]); Li et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m360-scheme1.jpg

Experimental

Crystal data

  • [Zn(C15H10O6)(H2O)2]
  • M r = 387.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m360-efi1.jpg
  • a = 13.496 (1) Å
  • b = 4.931 (1) Å
  • c = 12.357 (1) Å
  • β = 113.352 (1)°
  • V = 755.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.67 mm−1
  • T = 293 K
  • 0.21 × 0.19 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.707, T max = 0.780
  • 4318 measured reflections
  • 1696 independent reflections
  • 1461 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.075
  • S = 1.06
  • 1696 reflections
  • 118 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006965/at2728sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006965/at2728Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the the National Natural Science Foundation of China (No. 50878041) and the Analysis and Testing Foundation of Northeast Normal University for financial support.

supplementary crystallographic information

Comment

Recently, the area of metal-organic framework materials has become one of the intense research activity for their fascinating structural diversities and potential applications in catalysis, nonlinear optics and molecular sensing. As an important family of multidentate O-donor ligands, organic aromatic polycarboxylate ligands have been extensively employed in the preparation of metal-organic complexes because of their potential properties and intriguing structural topologies (Han et al., 2009; Li et al., 2007; Chen et al., 2002). Herein, we report the structure of the title complex with bis(4-benzoateoxyl)methane and zinc, [Zn(C15H10O6)(H2O)2] (I).

Single-crystal X-ray diffraction analyses revealed Zn(II) is tetra-coordinated and exhibits tetrahedral coordination environment supplied by two bis(4-benzoateoxyl)methane O atoms and two water molecules (Fig. 1). The Zn—O bond lengthes are in the normal range (Table 1). The bis(4-benzoateoxyl)methane ligand adopts bidentate coordinated modes and bond with two zinc ions to form a chain. Adjacent chains are linked by O—H···O hydrogen bonds and C—H···π interactions into a three-dimensional supramolecular network structure (Fig. 2, Table 2).

Experimental

Zinc(II) acetate dihydrate (0.066 g, 0.3 mol), bis(4-benzoateoxyl)methane (0.058 g, 0.2 mmol), sodium hydroxide (0.016 g, 0.4 mmol) and water (14 ml) were placed in a 23 ml Teflon-lined autoclave, and the autoclave was heated at 423 K for 3 d. After cooling slowly to room temperature at a rate of 10 K h-1, colourless crystals of (I) were obtained.

Refinement

C-bound H atoms were treated as riding, with C—H = 0.93 and 0.97Å and Uiso(H) = 1.2 times Ueq(C). O-bound H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions; Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
View of the local coordination of Zn(II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A packing diagram for the three-dimensional supramolecular framework via O—H···O interactions. The view direction is parallel to the a axis. Hydrogen bonds are indicated by dashed lines.

Crystal data

[Zn(C15H10O6)(H2O)2]F(000) = 396
Mr = 387.63Dx = 1.705 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ycCell parameters from 3185 reflections
a = 13.496 (1) Åθ = 2.1–27.4°
b = 4.931 (1) ŵ = 1.67 mm1
c = 12.357 (1) ÅT = 293 K
β = 113.352 (1)°Block, colourless
V = 755.0 (2) Å30.21 × 0.19 × 0.15 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer1696 independent reflections
Radiation source: fine-focus sealed tube1461 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = −10→17
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −6→5
Tmin = 0.707, Tmax = 0.780l = −15→15
4318 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0304P)2 + 0.2993P] where P = (Fo2 + 2Fc2)/3
1696 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn10.00000.02532 (7)0.25000.03611 (14)
O30.48509 (13)1.0388 (3)0.65056 (14)0.0430 (4)
O40.06484 (17)−0.2446 (4)0.17945 (17)0.0484 (5)
O20.07014 (13)0.2515 (3)0.46679 (14)0.0420 (4)
O10.12200 (13)0.2746 (3)0.31887 (13)0.0406 (4)
C50.39531 (18)0.8759 (5)0.60267 (19)0.0351 (5)
C70.22564 (18)0.6856 (4)0.58165 (19)0.0356 (5)
H70.16850.67540.60550.043*
C10.13275 (18)0.3401 (4)0.42419 (18)0.0331 (5)
C80.50001.1980 (7)0.75000.0451 (8)
H8A0.43751.31380.73300.054*0.50
H8B0.56251.31380.76700.054*0.50
C20.22362 (18)0.5269 (4)0.48823 (19)0.0328 (5)
C60.31099 (19)0.8591 (5)0.6403 (2)0.0379 (5)
H60.31190.96240.70370.046*
C30.3096 (2)0.5481 (5)0.4528 (2)0.0434 (6)
H30.30920.44530.38960.052*
C40.3942 (2)0.7180 (5)0.5100 (2)0.0447 (6)
H40.45150.72730.48630.054*
H20.069 (3)−0.244 (7)0.110 (3)0.100 (13)*
H10.085 (2)−0.374 (6)0.210 (2)0.046 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0455 (2)0.0276 (2)0.0380 (2)0.0000.01943 (18)0.000
O30.0416 (9)0.0491 (10)0.0364 (9)−0.0115 (8)0.0132 (7)0.0005 (7)
O40.0832 (14)0.0311 (10)0.0397 (10)0.0128 (9)0.0338 (10)0.0040 (8)
O20.0471 (9)0.0448 (9)0.0359 (9)−0.0096 (8)0.0183 (7)0.0003 (7)
O10.0538 (10)0.0371 (9)0.0338 (9)−0.0057 (8)0.0205 (8)−0.0074 (7)
C50.0361 (12)0.0332 (11)0.0337 (12)−0.0026 (10)0.0114 (10)0.0052 (10)
C70.0367 (12)0.0370 (12)0.0370 (12)−0.0021 (10)0.0189 (10)−0.0009 (10)
C10.0404 (12)0.0269 (10)0.0293 (11)0.0039 (9)0.0110 (10)0.0010 (9)
C80.045 (2)0.0317 (17)0.051 (2)0.0000.0109 (16)0.000
C20.0379 (12)0.0304 (11)0.0301 (11)−0.0009 (9)0.0135 (9)0.0015 (9)
C60.0445 (13)0.0378 (12)0.0338 (12)−0.0033 (10)0.0179 (11)−0.0055 (10)
C30.0488 (14)0.0483 (14)0.0398 (13)−0.0055 (12)0.0246 (12)−0.0078 (11)
C40.0447 (14)0.0506 (14)0.0483 (14)−0.0037 (12)0.0285 (12)−0.0033 (12)

Geometric parameters (Å, °)

Zn1—O11.9582 (18)C7—C21.386 (3)
Zn1—O1i1.9582 (18)C7—C61.387 (3)
Zn1—O41.975 (2)C7—H70.9300
Zn1—O4i1.975 (2)C1—C21.487 (3)
O3—C51.377 (3)C8—O3ii1.404 (2)
O3—C81.404 (2)C8—H8A0.9700
O4—H20.88 (4)C8—H8B0.9700
O4—H10.74 (3)C2—C31.396 (3)
O2—C11.239 (3)C6—H60.9300
O1—C11.292 (3)C3—C41.366 (3)
C5—C41.380 (3)C3—H30.9300
C5—C61.392 (3)C4—H40.9300
O1—Zn1—O1i102.26 (11)O1—C1—C2115.52 (19)
O1—Zn1—O499.87 (9)O3—C8—O3ii112.0 (3)
O1i—Zn1—O4132.40 (8)O3—C8—H8A109.2
O1—Zn1—O4i132.40 (8)O3ii—C8—H8A109.2
O1i—Zn1—O4i99.87 (9)O3—C8—H8B109.2
O4—Zn1—O4i95.27 (13)O3ii—C8—H8B109.2
C5—O3—C8119.93 (16)H8A—C8—H8B107.9
Zn1—O4—H2130 (2)C7—C2—C3118.3 (2)
Zn1—O4—H1119 (2)C7—C2—C1122.2 (2)
H2—O4—H1111 (3)C3—C2—C1119.5 (2)
C1—O1—Zn1109.52 (14)C7—C6—C5118.8 (2)
O3—C5—C4113.8 (2)C7—C6—H6120.6
O3—C5—C6126.0 (2)C5—C6—H6120.6
C4—C5—C6120.2 (2)C4—C3—C2120.8 (2)
C2—C7—C6121.5 (2)C4—C3—H3119.6
C2—C7—H7119.3C2—C3—H3119.6
C6—C7—H7119.3C3—C4—C5120.4 (2)
O2—C1—O1121.1 (2)C3—C4—H4119.8
O2—C1—C2123.4 (2)C5—C4—H4119.8
O1i—Zn1—O1—C186.84 (14)O1—C1—C2—C7158.0 (2)
O4—Zn1—O1—C1−135.58 (15)O2—C1—C2—C3159.3 (2)
O4i—Zn1—O1—C1−29.01 (18)O1—C1—C2—C3−21.1 (3)
C8—O3—C5—C4−176.2 (2)C2—C7—C6—C51.0 (3)
C8—O3—C5—C63.1 (3)O3—C5—C6—C7179.5 (2)
Zn1—O1—C1—O2−1.0 (3)C4—C5—C6—C7−1.2 (3)
Zn1—O1—C1—C2179.28 (14)C7—C2—C3—C40.9 (4)
C5—O3—C8—O3ii64.94 (16)C1—C2—C3—C4−180.0 (2)
C6—C7—C2—C3−0.9 (3)C2—C3—C4—C5−1.2 (4)
C6—C7—C2—C1−179.9 (2)O3—C5—C4—C3−179.3 (2)
O2—C1—C2—C7−21.7 (3)C6—C5—C4—C31.3 (4)

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H1···O1iii0.74 (3)2.13 (3)2.851 (3)167 (3)
O4—H2···O2iv0.88 (4)1.78 (4)2.657 (3)177 (4)
C8—H8A···Cg3v0.972.973.741 (3)137
C8—H8B···Cg3vi0.972.973.741 (3)137

Symmetry codes: (iii) x, y−1, z; (iv) x, −y, z−1/2; (v) x, y+1, z; (vi) −x+1, y+1, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2728).

References

  • Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J.8, 4811-4817. [PubMed]
  • Han, L., Zhou, Y., Zhao, W.-N., Li, X. & Liang, Y.-X. (2009). Cryst. Growth Des.9, 660-662.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, X.-M., Dong, Y.-H., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m1839–m1840.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography