PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o915.
Published online 2009 March 28. doi:  10.1107/S1600536809010976
PMCID: PMC2969038

2,5-Dimethyl­phenyl benzoate

Abstract

In the title compound, C15H14O2, the plane of the central –C(=O)–O– group is inclined at an angle of 3.7 (2)° with respect to the benzoate ring. The two benzene rings are almost perpendicular, making a dihedral angle of 87.4 (1)°. In the crystal, mol­ecules are packed into infinite chains through weak C—H(...)π inter­actions.

Related literature

For the preparation of the compound, see: Nayak & Gowda (2009 [triangle]); For related structures, see: Gowda et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o915-scheme1.jpg

Experimental

Crystal data

  • C15H14O2
  • M r = 226.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o915-efi2.jpg
  • a = 8.1095 (4) Å
  • b = 9.8569 (4) Å
  • c = 15.8805 (10) Å
  • β = 105.617 (5)°
  • V = 1222.54 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 295 K
  • 0.51 × 0.37 × 0.28 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Ruby (Gemini Mo) detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.958, T max = 0.982
  • 29473 measured reflections
  • 2330 independent reflections
  • 1890 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.108
  • S = 1.07
  • 2330 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.10 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010976/dn2434sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010976/dn2434Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the solid state geometries of aryl benzoates (Gowda et al., 2008a, b), in the present work, the structure of 2,5-dimethylphenyl benzoate (25DMPBA) has been determined. The structure of 25DMPBA (Fig. 1) is similar to those of 2,3-dimethylphenyl benzoate (23DMPBA) (Gowda et al., 2008a), 2,4-dimethylphenyl benzoate (24DMPBA) (Gowda et al., 2008b) and other aryl benzoates. The plane of central –O—C—O– group in 25DMPBA makes the dihedral angle of 3.7 (2)° with respect to the benzoate ring, compared with the value of 5.7 (1)° in the structure of 24DMPBA. The two aromatic rings in 25DMPBA form a dihedral angle of 87.4 (1)°, in comparison with the corresponding angle of 80.3 (1)° in 24DMPBA. The other bond parameters in 25DMPBA are similar to those in 23DMPBA, 24DMPBA and other aryl benzoates.

The molecules in the structure are packed into infinite chains through weak C-H···π interactions between some H atoms of the phenyl ring and the benzoate ring centroids. The first intermoleculer interaction includes the atoms C3, H3 and the benzoate ring centroid CT1 at the symmetry position (x-1,y,z). The second interaction includes C6, H6 and the benzoate ring centroid CT1 at the position (x,-y+3/2,z+1/2)(Fig. 2).

Experimental

The title compound was prepared according to a literature method (Nayak & Gowda, 2009). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2009). Single crystals of the title compound were obtained by slow evaporation of its ethanol solution. The X-ray diffraction studies were made at room temperature.

Refinement

H atoms were positioned geometrically and refined within a riding model with C—H distances of 0.93 or 0.96 Å and Uiso(H) = 1.2 (1.5 for methyl) times Ueq(C). Methyl groups were refined as freely rotating groups, using HFIX 137 command.

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of the crystal structure of (I) viewed down the b axis. Infinite chains generated via C-H···π interactions are shown as dotted lines. CT1 is the benzoate ring (C8 to C13) centroid. H atoms not involved in hydrogen ...

Crystal data

C15H14O2F(000) = 480
Mr = 226.26Dx = 1.229 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15569 reflections
a = 8.1095 (4) Åθ = 3.2–29.5°
b = 9.8569 (4) ŵ = 0.08 mm1
c = 15.8805 (10) ÅT = 295 K
β = 105.617 (5)°Block, colourless
V = 1222.54 (11) Å30.51 × 0.37 × 0.28 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with Ruby (Gemini Mo) detector2330 independent reflections
graphite1890 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.025
ω scansθmax = 25.9°, θmin = 4.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −9→9
Tmin = 0.958, Tmax = 0.982k = −12→12
29473 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.051P)2 + 0.1667P] where P = (Fo2 + 2Fc2)/3
2330 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.10 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.08573 (11)0.73415 (10)0.37466 (6)0.0590 (3)
O2−0.16712 (13)0.79648 (13)0.28463 (7)0.0766 (3)
C1−0.08701 (16)0.75141 (14)0.35356 (8)0.0522 (3)
C2−0.16012 (16)0.70922 (12)0.42546 (8)0.0478 (3)
C3−0.33645 (17)0.71460 (15)0.41159 (9)0.0586 (4)
H3−0.40580.74470.35830.070*
C4−0.40821 (19)0.67532 (17)0.47672 (10)0.0671 (4)
H4−0.52640.67780.46730.080*
C5−0.30493 (19)0.63207 (16)0.55630 (10)0.0669 (4)
H5−0.35400.60580.60040.080*
C6−0.13073 (18)0.62763 (15)0.57060 (9)0.0606 (4)
H6−0.06180.59930.62450.073*
C7−0.05770 (17)0.66498 (13)0.50552 (8)0.0520 (3)
H70.06050.66060.51510.062*
C80.16784 (16)0.77386 (14)0.31055 (8)0.0529 (3)
C90.22655 (16)0.90581 (15)0.31172 (8)0.0577 (3)
C100.30805 (18)0.93723 (17)0.24763 (9)0.0665 (4)
H100.34871.02490.24490.080*
C110.33025 (18)0.84237 (19)0.18820 (9)0.0681 (4)
H110.38450.86770.14600.082*
C120.27415 (17)0.71068 (17)0.18959 (9)0.0626 (4)
C130.19194 (17)0.67728 (15)0.25320 (8)0.0570 (3)
H130.15330.58920.25670.068*
C140.2076 (2)1.00775 (18)0.37817 (11)0.0801 (5)
H14A0.09730.99750.38900.120*
H14B0.21751.09750.35660.120*
H14C0.29560.99380.43160.120*
C150.2950 (2)0.6074 (2)0.12344 (11)0.0871 (5)
H15A0.19040.60080.07760.131*
H15B0.32170.52070.15140.131*
H15C0.38620.63480.09920.131*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0521 (5)0.0796 (6)0.0484 (5)0.0000 (4)0.0188 (4)0.0125 (4)
O20.0609 (6)0.1169 (9)0.0518 (6)0.0068 (6)0.0147 (5)0.0194 (6)
C10.0531 (7)0.0587 (7)0.0451 (7)−0.0021 (6)0.0138 (6)−0.0006 (6)
C20.0517 (7)0.0480 (7)0.0454 (6)−0.0037 (5)0.0159 (5)−0.0056 (5)
C30.0530 (7)0.0680 (9)0.0545 (8)−0.0003 (6)0.0137 (6)−0.0014 (6)
C40.0521 (8)0.0831 (10)0.0720 (9)−0.0040 (7)0.0269 (7)−0.0051 (8)
C50.0696 (9)0.0770 (9)0.0643 (9)−0.0056 (7)0.0357 (7)0.0002 (7)
C60.0664 (9)0.0697 (9)0.0487 (7)0.0003 (7)0.0204 (6)0.0034 (6)
C70.0517 (7)0.0576 (7)0.0484 (7)−0.0025 (6)0.0163 (5)−0.0028 (6)
C80.0455 (7)0.0698 (8)0.0432 (6)−0.0006 (6)0.0116 (5)0.0114 (6)
C90.0513 (7)0.0689 (8)0.0492 (7)−0.0028 (6)0.0070 (6)0.0075 (6)
C100.0558 (8)0.0794 (10)0.0607 (8)−0.0133 (7)0.0096 (7)0.0171 (7)
C110.0494 (8)0.1034 (12)0.0545 (8)−0.0048 (8)0.0190 (6)0.0147 (8)
C120.0476 (7)0.0890 (11)0.0518 (7)0.0099 (7)0.0144 (6)0.0083 (7)
C130.0521 (7)0.0665 (8)0.0527 (7)0.0014 (6)0.0146 (6)0.0075 (6)
C140.0914 (12)0.0787 (11)0.0666 (9)−0.0073 (9)0.0153 (8)−0.0050 (8)
C150.0837 (12)0.1139 (14)0.0708 (10)0.0228 (10)0.0329 (9)−0.0025 (10)

Geometric parameters (Å, °)

O1—C11.3605 (16)C8—C91.383 (2)
O1—C81.4136 (15)C9—C101.3895 (19)
O2—C11.1977 (16)C9—C141.495 (2)
C1—C21.4807 (17)C10—C111.374 (2)
C2—C31.3880 (18)C10—H100.9300
C2—C71.3885 (18)C11—C121.378 (2)
C3—C41.372 (2)C11—H110.9300
C3—H30.9300C12—C131.3913 (19)
C4—C51.382 (2)C12—C151.505 (2)
C4—H40.9300C13—H130.9300
C5—C61.370 (2)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.3727 (18)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C131.367 (2)C15—H15C0.9600
C1—O1—C8116.19 (10)C8—C9—C14122.75 (13)
O2—C1—O1122.74 (12)C10—C9—C14121.80 (14)
O2—C1—C2125.28 (12)C11—C10—C9121.83 (14)
O1—C1—C2111.98 (10)C11—C10—H10119.1
C3—C2—C7119.61 (12)C9—C10—H10119.1
C3—C2—C1118.43 (11)C10—C11—C12121.67 (13)
C7—C2—C1121.96 (11)C10—C11—H11119.2
C4—C3—C2119.83 (13)C12—C11—H11119.2
C4—C3—H3120.1C11—C12—C13117.36 (14)
C2—C3—H3120.1C11—C12—C15121.77 (14)
C3—C4—C5120.05 (13)C13—C12—C15120.84 (15)
C3—C4—H4120.0C8—C13—C12120.07 (14)
C5—C4—H4120.0C8—C13—H13120.0
C6—C5—C4120.36 (13)C12—C13—H13120.0
C6—C5—H5119.8C9—C14—H14A109.5
C4—C5—H5119.8C9—C14—H14B109.5
C5—C6—C7120.09 (13)H14A—C14—H14B109.5
C5—C6—H6120.0C9—C14—H14C109.5
C7—C6—H6120.0H14A—C14—H14C109.5
C6—C7—C2120.05 (12)H14B—C14—H14C109.5
C6—C7—H7120.0C12—C15—H15A109.5
C2—C7—H7120.0C12—C15—H15B109.5
C13—C8—C9123.58 (12)H15A—C15—H15B109.5
C13—C8—O1117.80 (12)C12—C15—H15C109.5
C9—C8—O1118.54 (12)H15A—C15—H15C109.5
C8—C9—C10115.44 (14)H15B—C15—H15C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···CT1i0.932.923.7477 (14)148
C6—H6···CT1ii0.932.913.6495 (14)137

Symmetry codes: (i) x−1, y, z; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2434).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o844. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1280. [PMC free article] [PubMed]
  • Nayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A, 63 In preparation.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography