PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m386.
Published online 2009 March 11. doi:  10.1107/S160053680900796X
PMCID: PMC2969028

catena-Poly[[(dimethyl­formamide-κO)copper(II)]-bis­(μ-4-nitro­phenyl­cyanamido-κ2 N 1:N 3)]

Abstract

In the title compound, [Cu(C7H4N3O2)2(C3H7NO)], the CuII atom is five-coordinated in a distorted square-pyramidal geometry, with the N atoms in equatorial positions and the dimethyl­formamide O atom in an axial position. The dihedral angle between adjacent benzene rings is 70.33 (12)°.

Related literature

The phenyl­cyanamide molecule can function as bridging ligand and can coordinate to two different metallic centers by means of the nitrile and amine N atoms (μ1,3 bonding mode), forming di- and polynuclear complexes, see: Ainscough et al. (1991 [triangle]); Brader et al. (1990 [triangle]); Crutchley (2001 [triangle]); Escuer et al. (2004 [triangle]). For the magnetic properties of coordination polymers, see: Grosshenny et al. (1996 [triangle]). For the preparation of 4-NO2-phenyl­cyanamide used in the synthesis, see: Crutchley & Naklicki (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m386-scheme1.jpg

Experimental

Crystal data

  • [Cu(C7H4N3O2)2(C3H7NO)]
  • M r = 460.91
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m386-efi3.jpg
  • a = 21.5103 (12) Å
  • b = 8.7883 (5) Å
  • c = 9.9195 (5) Å
  • β = 101.746 (4)°
  • V = 1835.91 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.24 mm−1
  • T = 120 K
  • 0.50 × 0.23 × 0.15 mm

Data collection

  • Stoe IPDS-II diffractometer
  • Absorption correction: numerical with shape of crystal determined optically T min = 0.720, T max = 0.832
  • 13057 measured reflections
  • 4874 independent reflections
  • 4496 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.091
  • S = 1.08
  • 4874 reflections
  • 273 parameters
  • H-atom parameters constrained
  • Δρmax = 0.99 e Å−3
  • Δρmin = −0.91 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900796X/bq2120sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900796X/bq2120Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Isfahan University of Technology.

supplementary crystallographic information

Comment

Phenylcyanamide ligands are used in the construction of transition metal coordination complexes. The study of coordination polymeric materials holds great interest. The phenylcyanamide can function as bridging ligand and can coordinate to two different metallic centers by means of the nitrile and amine nitrogen (µ1,3 bonding mode), forming di- and polynuclear complexes (Brader et al., 1990; Crutchley et al., 2001; Ainscough et al., 1991; Escuer et al., 2004). It can modify the solubility and crystallinety of resulting compounds and there is the different coordination in complexes. We are attempting to construct conductive inorganic polymer chains that are cross-linked by cyanamide groups to a coordination complex. Coordination polymers also hold promise as novel materials because of their magnetic properties (Grosshenny et al., 1996). More recently various aromatic cyanamide complexes have been studied by x-ray crystallography.

In the molecule of the title compound, (I), (Fig. 1) the selected bond lengths and angles are listed in Table 1. In this molecule, the {Cu(4—NO2-pcyd)2(DMF)}n one-dimensional chain coordination polymer bridged by 4-NO2-phenylcyanamide. Each copper atom has a distored square pyramidal geometry, that nitrogen atoms are in equatorial position and oxygen atom from DMF molecule is in axial position (Table 1.). The dihedral angle between adjacent phenyl rings in the polymeric chain is 70.33 (12)°.

Experimental

The 4-NO2-phenylcyanamide (Crutchley et al.,1989) (0.163 gr, 0.5 mmol) dissolved in methanol (30 ml) was added slowly to a solution of copper(II) acetate monohydrate (0.998 gr, 1 mmol) in methanol (30 ml). The mixture was stirred for 4 h. The solid filtered and crystals suitable for X-ray structure determination were obtained by dissolving in DMF then diffused by n-Hexane, after 1 week.

Refinement

All of the H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic and aldehyde H atoms and with C—H = 0.93 Å for methyl H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of (I) with 30% probability displacement ellipsoids. Symmetry code (i): x, -y - 3/2, z - 1/2.

Crystal data

[Cu(C7H4N3O2)2(C3H7NO)]F(000) = 940
Mr = 460.91Dx = 1.668 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1359 reflections
a = 21.5103 (12) Åθ = 3.0–29.3°
b = 8.7883 (5) ŵ = 1.24 mm1
c = 9.9195 (5) ÅT = 120 K
β = 101.746 (4)°Prism, violet
V = 1835.91 (17) Å30.5 × 0.23 × 0.15 mm
Z = 4

Data collection

Stoe IPDS-II diffractometer4496 reflections with I > 2σ(I)
rotation method scansRint = 0.050
Absorption correction: numerical shape of crystal determined opticallyθmax = 29.3°, θmin = 3.0°
Tmin = 0.720, Tmax = 0.832h = −29→24
13057 measured reflectionsk = −10→12
4874 independent reflectionsl = −13→13

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033w = 1/[σ2(Fo2) + (0.051P)2 + 0.8628P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.017
S = 1.08Δρmax = 0.99 e Å3
4874 reflectionsΔρmin = −0.91 e Å3
273 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.18470 (7)−0.78476 (17)0.48486 (14)0.0134 (3)
C20.11109 (7)−0.85879 (17)0.61210 (15)0.0134 (3)
C30.06225 (7)−0.77637 (19)0.52815 (15)0.0170 (3)
H30.0717−0.71320.45990.02*
C4−0.00005 (7)−0.78755 (19)0.54535 (16)0.0187 (3)
H4−0.0323−0.73270.48930.022*
C5−0.01325 (7)−0.8821 (2)0.64786 (16)0.0179 (3)
C60.03397 (8)−0.96827 (18)0.73088 (16)0.0177 (3)
H60.0239−1.03250.79780.021*
C70.09602 (7)−0.95722 (17)0.71271 (15)0.0155 (3)
H70.1278−1.0150.76710.019*
C80.31962 (7)−0.74093 (18)1.03158 (14)0.0140 (3)
C90.39374 (7)−0.82569 (17)0.90993 (15)0.0142 (3)
C100.41040 (7)−0.94717 (18)0.83254 (15)0.0156 (3)
H100.3799−1.01780.79320.019*
C110.47252 (7)−0.96186 (19)0.81480 (15)0.0179 (3)
H110.4839−1.04190.76340.021*
C120.51748 (8)−0.8551 (2)0.87497 (16)0.0186 (3)
C130.50288 (7)−0.7369 (2)0.95631 (16)0.0192 (3)
H130.534−0.66880.99820.023*
C140.44059 (7)−0.72297 (19)0.97349 (15)0.0170 (3)
H140.4299−0.64481.02770.02*
C150.23643 (8)−1.18081 (18)0.70530 (16)0.0164 (3)
H150.2162−1.14690.61870.02*
C160.27640 (9)−1.3914 (2)0.85538 (18)0.0239 (3)
H16A0.2471−1.45440.89140.029*
H16B0.2907−1.31010.91870.029*
H16C0.3121−1.45140.84310.029*
C170.22428 (9)−1.4360 (2)0.61151 (18)0.0242 (3)
H17C0.195−1.50730.63750.029*
H17B0.2605−1.48960.59280.029*
H17A0.2038−1.3820.53050.029*
N10.19773 (6)−0.73209 (16)0.38708 (13)0.0159 (2)
N20.17467 (6)−0.84608 (14)0.59891 (13)0.0133 (2)
N3−0.07813 (7)−0.8905 (2)0.67009 (16)0.0245 (3)
N40.30602 (6)−0.68183 (17)1.12639 (13)0.0169 (3)
N50.32972 (6)−0.80866 (16)0.92140 (12)0.0136 (2)
N60.58231 (7)−0.8682 (2)0.85134 (15)0.0249 (3)
N70.24485 (6)−1.32833 (16)0.72334 (14)0.0166 (3)
Cu10.252435 (8)−0.842098 (19)0.763487 (17)0.01030 (7)
O1−0.11924 (6)−0.8137 (2)0.59671 (16)0.0360 (3)
O2−0.08874 (8)−0.9731 (2)0.7622 (2)0.0497 (5)
O30.61904 (7)−0.7620 (2)0.88752 (16)0.0380 (4)
O40.59667 (7)−0.9839 (2)0.79478 (16)0.0379 (4)
O50.25389 (6)−1.08324 (13)0.79693 (11)0.0182 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0091 (6)0.0152 (6)0.0141 (6)−0.0002 (5)−0.0015 (5)−0.0010 (5)
C20.0118 (6)0.0143 (6)0.0137 (6)−0.0026 (5)0.0017 (5)−0.0023 (5)
C30.0150 (7)0.0208 (7)0.0146 (6)0.0011 (5)0.0017 (5)0.0014 (5)
C40.0131 (7)0.0228 (8)0.0189 (6)0.0024 (6)0.0005 (5)−0.0020 (6)
C50.0116 (6)0.0208 (7)0.0219 (7)−0.0027 (6)0.0047 (5)−0.0059 (6)
C60.0162 (7)0.0176 (7)0.0204 (7)−0.0046 (5)0.0062 (5)−0.0007 (5)
C70.0139 (6)0.0158 (6)0.0163 (6)−0.0025 (5)0.0019 (5)0.0004 (5)
C80.0089 (6)0.0183 (7)0.0135 (6)−0.0012 (5)−0.0009 (5)0.0010 (5)
C90.0115 (6)0.0182 (7)0.0125 (6)0.0023 (5)0.0015 (5)0.0023 (5)
C100.0134 (6)0.0177 (7)0.0145 (6)0.0020 (5)0.0005 (5)−0.0002 (5)
C110.0163 (7)0.0224 (7)0.0147 (6)0.0060 (6)0.0029 (5)0.0012 (5)
C120.0116 (6)0.0271 (8)0.0173 (7)0.0029 (6)0.0035 (5)0.0051 (6)
C130.0133 (6)0.0246 (8)0.0190 (7)−0.0025 (6)0.0019 (5)0.0015 (6)
C140.0144 (7)0.0204 (7)0.0159 (6)0.0002 (5)0.0025 (5)−0.0024 (5)
C150.0183 (7)0.0142 (7)0.0169 (6)−0.0004 (5)0.0039 (5)0.0002 (5)
C160.0293 (8)0.0163 (7)0.0251 (8)0.0047 (6)0.0031 (6)0.0053 (6)
C170.0303 (9)0.0170 (7)0.0265 (8)−0.0018 (6)0.0089 (7)−0.0079 (6)
N10.0104 (5)0.0230 (7)0.0139 (5)−0.0003 (5)0.0014 (4)0.0018 (5)
N20.0100 (5)0.0181 (6)0.0110 (5)−0.0018 (4)0.0006 (4)0.0006 (4)
N30.0151 (6)0.0283 (8)0.0312 (7)−0.0031 (6)0.0074 (5)−0.0066 (6)
N40.0105 (5)0.0263 (7)0.0130 (5)−0.0018 (5)−0.0001 (4)−0.0031 (5)
N50.0093 (5)0.0191 (6)0.0119 (5)0.0002 (4)0.0007 (4)−0.0023 (4)
N60.0147 (6)0.0396 (9)0.0211 (6)0.0052 (6)0.0049 (5)0.0051 (6)
N70.0183 (6)0.0130 (6)0.0186 (6)−0.0008 (4)0.0039 (5)−0.0012 (4)
Cu10.00955 (10)0.01191 (10)0.00912 (10)−0.00041 (6)0.00118 (6)−0.00033 (5)
O10.0144 (6)0.0544 (10)0.0386 (8)0.0052 (6)0.0040 (5)−0.0007 (7)
O20.0246 (7)0.0595 (11)0.0711 (12)0.0005 (7)0.0246 (8)0.0261 (10)
O30.0161 (6)0.0527 (10)0.0463 (8)−0.0059 (6)0.0087 (6)−0.0026 (7)
O40.0244 (7)0.0487 (9)0.0443 (8)0.0094 (7)0.0154 (6)−0.0049 (7)
O50.0248 (6)0.0119 (5)0.0169 (5)−0.0014 (4)0.0017 (4)−0.0005 (4)

Geometric parameters (Å, °)

C1—N11.160 (2)C13—C141.390 (2)
C1—N21.3099 (18)C13—H130.93
C2—C31.402 (2)C14—H140.93
C2—N21.4046 (19)C15—O51.250 (2)
C2—C71.408 (2)C15—N71.316 (2)
C3—C41.388 (2)C15—H150.93
C3—H30.93C16—N71.457 (2)
C4—C51.387 (2)C16—H16A0.96
C4—H40.93C16—H16B0.96
C5—C61.394 (2)C16—H16C0.96
C5—N31.458 (2)C17—N71.457 (2)
C6—C71.386 (2)C17—H17C0.96
C6—H60.93C17—H17B0.96
C7—H70.93C17—H17A0.96
C8—N41.163 (2)N1—Cu1i1.9748 (13)
C8—N51.3010 (19)N2—Cu12.0862 (13)
C9—C141.403 (2)N3—O21.224 (2)
C9—C101.403 (2)N3—O11.227 (2)
C9—N51.4126 (19)N4—Cu1ii1.9648 (13)
C10—C111.389 (2)N5—Cu12.0599 (12)
C10—H100.93N6—O31.229 (2)
C11—C121.392 (2)N6—O41.230 (2)
C11—H110.93Cu1—N4i1.9648 (13)
C12—C131.390 (2)Cu1—N1ii1.9748 (13)
C12—N61.465 (2)Cu1—O52.1443 (12)
N1—C1—N2175.56 (15)N7—C16—H16A109.5
C3—C2—N2121.98 (13)N7—C16—H16B109.5
C3—C2—C7119.06 (14)H16A—C16—H16B109.5
N2—C2—C7118.96 (13)N7—C16—H16C109.5
C4—C3—C2121.05 (14)H16A—C16—H16C109.5
C4—C3—H3119.5H16B—C16—H16C109.5
C2—C3—H3119.5N7—C17—H17C109.5
C5—C4—C3118.64 (14)N7—C17—H17B109.5
C5—C4—H4120.7H17C—C17—H17B109.5
C3—C4—H4120.7N7—C17—H17A109.5
C4—C5—C6121.70 (14)H17C—C17—H17A109.5
C4—C5—N3119.07 (15)H17B—C17—H17A109.5
C6—C5—N3119.22 (15)C1—N1—Cu1i158.01 (12)
C7—C6—C5119.36 (14)C1—N2—C2116.60 (12)
C7—C6—H6120.3C1—N2—Cu1114.97 (10)
C5—C6—H6120.3C2—N2—Cu1124.69 (9)
C6—C7—C2120.15 (14)O2—N3—O1123.22 (16)
C6—C7—H7119.9O2—N3—C5118.16 (16)
C2—C7—H7119.9O1—N3—C5118.63 (16)
N4—C8—N5175.15 (15)C8—N4—Cu1ii152.54 (13)
C14—C9—C10119.68 (14)C8—N5—C9116.64 (12)
C14—C9—N5121.22 (13)C8—N5—Cu1117.20 (10)
C10—C9—N5119.09 (14)C9—N5—Cu1124.94 (9)
C11—C10—C9119.96 (15)O3—N6—O4123.70 (16)
C11—C10—H10120O3—N6—C12118.03 (16)
C9—C10—H10120O4—N6—C12118.26 (16)
C10—C11—C12119.05 (14)C15—N7—C17121.62 (15)
C10—C11—H11120.5C15—N7—C16121.55 (14)
C12—C11—H11120.5C17—N7—C16116.82 (14)
C13—C12—C11122.23 (14)N4i—Cu1—N1ii154.42 (6)
C13—C12—N6119.11 (15)N4i—Cu1—N590.85 (5)
C11—C12—N6118.65 (15)N1ii—Cu1—N588.36 (5)
C14—C13—C12118.31 (15)N4i—Cu1—N287.13 (5)
C14—C13—H13120.8N1ii—Cu1—N290.41 (5)
C12—C13—H13120.8N5—Cu1—N2172.66 (5)
C13—C14—C9120.69 (14)N4i—Cu1—O5102.75 (5)
C13—C14—H14119.7N1ii—Cu1—O5102.83 (5)
C9—C14—H14119.7N5—Cu1—O592.25 (5)
O5—C15—N7124.33 (15)N2—Cu1—O595.08 (5)
O5—C15—H15117.8C15—O5—Cu1124.92 (11)
N7—C15—H15117.8
N2—C2—C3—C4−178.27 (14)C14—C9—N5—C8−27.7 (2)
C7—C2—C3—C41.7 (2)C10—C9—N5—C8152.76 (14)
C2—C3—C4—C50.1 (2)C14—C9—N5—Cu1139.25 (12)
C3—C4—C5—C6−1.6 (2)C10—C9—N5—Cu1−40.26 (19)
C3—C4—C5—N3177.78 (15)C13—C12—N6—O3−10.4 (2)
C4—C5—C6—C71.3 (2)C11—C12—N6—O3169.52 (16)
N3—C5—C6—C7−178.12 (14)C13—C12—N6—O4170.58 (16)
C5—C6—C7—C20.6 (2)C11—C12—N6—O4−9.5 (2)
C3—C2—C7—C6−2.0 (2)O5—C15—N7—C17−178.97 (15)
N2—C2—C7—C6177.94 (14)O5—C15—N7—C16−0.3 (3)
C14—C9—C10—C11−2.5 (2)C8—N5—Cu1—N4i147.21 (12)
N5—C9—C10—C11177.06 (13)C9—N5—Cu1—N4i−19.70 (13)
C9—C10—C11—C120.2 (2)C8—N5—Cu1—N1ii−7.22 (12)
C10—C11—C12—C132.2 (2)C9—N5—Cu1—N1ii−174.13 (13)
C10—C11—C12—N6−177.70 (14)C8—N5—Cu1—O5−110.00 (12)
C11—C12—C13—C14−2.2 (2)C9—N5—Cu1—O583.09 (13)
N6—C12—C13—C14177.69 (14)C1—N2—Cu1—N4i−21.30 (11)
C12—C13—C14—C9−0.1 (2)C2—N2—Cu1—N4i−178.68 (12)
C10—C9—C14—C132.5 (2)C1—N2—Cu1—N1ii133.23 (11)
N5—C9—C14—C13−177.06 (14)C2—N2—Cu1—N1ii−24.15 (12)
C3—C2—N2—C1−16.4 (2)C1—N2—Cu1—O5−123.85 (11)
C7—C2—N2—C1163.60 (14)C2—N2—Cu1—O578.76 (12)
C3—C2—N2—Cu1140.62 (12)N7—C15—O5—Cu1171.10 (11)
C7—C2—N2—Cu1−39.34 (18)N4i—Cu1—O5—C15−57.95 (14)
C4—C5—N3—O2−179.12 (18)N1ii—Cu1—O5—C15121.84 (13)
C6—C5—N3—O20.3 (3)N5—Cu1—O5—C15−149.33 (13)
C4—C5—N3—O10.3 (2)N2—Cu1—O5—C1530.25 (13)
C6—C5—N3—O1179.73 (16)

Symmetry codes: (i) x, −y−3/2, z−1/2; (ii) x, −y−3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2120).

References

  • Ainscough, E. W., Baker, E. N., Brader, M. L. & Brodie, A. M. (1991). J. Chem. Soc. Dalton Trans. pp. 1243–1249.
  • Brader, M. L., Ainscough, E. W., Baker, E. N. & Ingham, A. M. (1990). J. Chem. Soc. Dalton Trans. pp. 2785–2792.
  • Crutchley, R. J. (2001). Coord. Chem. Rev.219, 125–155.
  • Crutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem.28, 1955–1958.
  • Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409–1417.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Grosshenny, V., Harriman, A., Romero, F. M. & Ziessel, R. (1996). J. Chem. Phys.100, 17472–17484.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography