PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o860–o861.
Published online 2009 March 25. doi:  10.1107/S1600536809009167
PMCID: PMC2969025

1-Ethyl-N′-[(E)-4-hydroxy­benzyl­idene]-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide

Abstract

In the crystal structure of the title compound, C19H18N4O3, the fused-ring system is essentially planar [maximum deviation is 0.031 (2) Å] while the dihedral angle between the ring system and the benzene ring is 12.64 (6)°.The carbohydrazide H atom is involved in an intra­molecular N—H(...)O hydrogen bond, forming a six-membered hydrogen-bonded ring. The mol­ecules arrange themselves into centrosymmetric dimers by means of inter­molecular O—H(...)O hydrogen bonds.

Related literature

For the synthesis of heterocyclic compounds, see: Chen et al. (2001 [triangle]); Zia-ur-Rehman et al. (2006 [triangle], 2009 [triangle]). For their biological activity, see: Ferrarini et al. (2000 [triangle]); Gavrilova & Bosnich (2004 [triangle]); Goswami & Mukherjee (1997 [triangle]); Hoock et al. (1999 [triangle]); Mintert & Sheldrick (1995 [triangle]); Nakatani et al. (2000 [triangle]); Nakataniz et al. (2001 [triangle]); Roma et al. (2000 [triangle]). For similar mol­ecules, see: Catalano et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o860-scheme1.jpg

Experimental

Crystal data

  • C19H18N4O3
  • M r = 350.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o860-efi1.jpg
  • a = 7.6437 (2) Å
  • b = 13.3290 (2) Å
  • c = 17.2212 (4) Å
  • β = 98.1745 (14)°
  • V = 1736.72 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.2 × 0.14 × 0.1 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.990, T max = 0.991
  • 35553 measured reflections
  • 3583 independent reflections
  • 2597 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.151
  • S = 1.04
  • 3583 reflections
  • 244 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009167/ng2560sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009167/ng2560Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to the Department of Chemistry, Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 from the University Research Fund.

supplementary crystallographic information

Comment

Derivatives of 1,8-naphthyridine have been investigated since a long ago due to their interesting complexation properties and medical uses. Such compounds are known to possess antibacterial (Chen et al., 2001), anti-inflammatory (Roma et al., 2000), anti-hypertensive, and anti-platelet activities (Ferrarini et al., 2000). These have also been widely utilized as molecular recognition receptors for urea, carboxylic acids and guanine (Goswami et al., 1997; Nakatani et al., 2000). Few 1,8-naphthyridine derivatives have been reported to be excellent fluorescent markers of nucleic acids (Hoock et al., 1999) and probe molecules (Nakataniz et al., 2001). In addition, these have received much attention due to the possibility of their linkage with metals in several coordination modes such as monodentate, chelating bidentate, and dinuclear bridging binding fashion (Gavrilova & Bosnich, 2004; Mintert & Sheldrick, 1995).

In continuation of our work on the synthesis, biological activity and crystal structures of various heterocyclic compounds (Zia-ur-Rehman et al., 2006; Zia-ur-Rehman et al., 2009), we herein report the synthesis and crystal structure of the title compound (I) (Scheme and figure 1). The structure of the basic naphthyridine ring consisting of two adjoined pyridine rings is planar while carbonyl oxygen O1 on C11 is involved in intramolecular hydrogen bonding giving rise to a six-membered hydrogen bond ring (Table 1). All bond distances are essentially identical to those found in the literature (Catalano et al., 2000).The molecules form centrosymmetric dimers through intermolecular O—H···O hydrogen bonds.

Experimental

A mixture of 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (10.0 mmoles; 2.46 g), 4-hydroxy benzaldehyde (11.0 mmoles; 1.34 g), ortho phosphoric acid (2 drops) and ethyl alcohol (20.0 ml) was refluxed for a period of two hours. After completion of the reaction as indicated by TLC, three fourth of the solvent was evaporated and the contents were cooled to room temperature. Crystals obtained were washed with cold ethanol and dried; Yield: 92%.

Refinement

H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å, O—H=0.82 Å) and treated as riding, with Uiso(H)=1.2Ueq(C) (for methine and methylene) or 1.5Ueq (methyl and hydroxyl). The N3 and C13 H atoms were located in a difference Fourier map

Figures

Fig. 1.
An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C19H18N4O3F(000) = 736
Mr = 350.37Dx = 1.34 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3643 reflections
a = 7.6437 (2) Åθ = 2.4–26.4°
b = 13.3290 (2) ŵ = 0.09 mm1
c = 17.2212 (4) ÅT = 293 K
β = 98.1745 (14)°Prism, light yellow
V = 1736.72 (7) Å30.2 × 0.14 × 0.1 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID-S diffractometer3583 independent reflections
graphite2597 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.064
ω scansθmax = 26.7°, θmin = 2.4°
Absorption correction: multi-scan (Blessing, 1995)h = −8→9
Tmin = 0.990, Tmax = 0.991k = −16→16
35553 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0654P)2 + 0.3979P] where P = (Fo2 + 2Fc2)/3
3583 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2080 (2)0.01852 (11)0.57270 (8)0.0654 (4)
O3−0.1795 (2)−0.65000 (11)0.71180 (9)0.0686 (4)
H3O−0.1729−0.69190.67750.103*
N10.4591 (2)0.22498 (12)0.39012 (10)0.0556 (4)
N30.1243 (2)−0.16773 (13)0.52592 (10)0.0554 (4)
N40.0658 (2)−0.26173 (12)0.54348 (10)0.0554 (4)
O20.1598 (2)−0.20967 (11)0.40138 (9)0.0750 (5)
N20.3819 (2)0.05987 (12)0.36073 (9)0.0532 (4)
C17−0.1341 (3)−0.55811 (15)0.68611 (11)0.0524 (5)
C14−0.0321 (3)−0.36963 (14)0.63803 (11)0.0517 (5)
C110.2538 (3)0.03007 (14)0.50649 (11)0.0505 (5)
C100.2423 (3)−0.04590 (14)0.44689 (11)0.0493 (5)
C16−0.1130 (3)−0.54200 (15)0.60834 (11)0.0567 (5)
H16−0.1315−0.5940.57210.068*
C90.3081 (3)−0.02682 (15)0.37834 (12)0.0544 (5)
H90.3009−0.07790.34130.065*
C130.0289 (3)−0.27273 (16)0.61292 (12)0.0561 (5)
C15−0.0647 (3)−0.44868 (15)0.58534 (11)0.0590 (5)
H15−0.0533−0.4380.53290.071*
C60.3892 (3)0.13908 (14)0.41286 (11)0.0494 (5)
C18−0.1077 (3)−0.48014 (16)0.73924 (11)0.0580 (5)
H18−0.1243−0.49030.79110.07*
C50.3272 (3)0.12561 (14)0.48473 (11)0.0500 (5)
C20.4702 (3)0.30211 (15)0.43905 (13)0.0586 (5)
C120.1715 (3)−0.14835 (14)0.45515 (12)0.0539 (5)
C19−0.0567 (3)−0.38686 (15)0.71523 (11)0.0562 (5)
H19−0.0385−0.33480.75150.067*
C10.5445 (3)0.39767 (17)0.41103 (15)0.0736 (7)
H1A0.57640.38750.35970.11*
H1C0.64740.41680.44660.11*
H1B0.45730.44980.40890.11*
C40.3414 (3)0.20843 (16)0.53477 (13)0.0648 (6)
H40.30230.20410.58340.078*
C30.4127 (4)0.29585 (17)0.51221 (13)0.0716 (6)
H30.42290.35110.54560.086*
C70.4608 (3)0.06988 (18)0.28730 (12)0.0679 (6)
H7A0.49110.00380.26980.082*
H7B0.56910.10860.29790.082*
C80.3387 (4)0.1199 (3)0.22344 (15)0.1028 (10)
H8B0.39560.12540.17740.154*
H8C0.30930.18570.24030.154*
H8A0.23280.08080.21160.154*
H130.045 (3)−0.2191 (17)0.6511 (13)0.067 (6)*
H3N0.131 (3)−0.1174 (17)0.5616 (13)0.070 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0978 (11)0.0566 (9)0.0456 (8)−0.0032 (8)0.0238 (8)0.0018 (6)
O30.1010 (12)0.0523 (8)0.0579 (9)−0.0040 (8)0.0296 (9)0.0053 (7)
N10.0569 (10)0.0537 (10)0.0566 (10)−0.0026 (8)0.0098 (8)0.0042 (8)
N30.0732 (11)0.0448 (9)0.0499 (10)−0.0026 (8)0.0139 (8)0.0024 (8)
N40.0676 (11)0.0446 (9)0.0551 (10)−0.0016 (8)0.0125 (8)0.0040 (7)
O20.1160 (14)0.0533 (9)0.0596 (9)−0.0130 (8)0.0259 (9)−0.0086 (7)
N20.0632 (10)0.0529 (9)0.0466 (9)−0.0036 (8)0.0186 (7)−0.0010 (7)
C170.0623 (12)0.0483 (11)0.0491 (11)0.0007 (9)0.0159 (9)0.0051 (8)
C140.0608 (12)0.0479 (10)0.0481 (11)−0.0006 (9)0.0131 (9)0.0019 (8)
C110.0581 (12)0.0503 (11)0.0436 (10)0.0056 (9)0.0093 (8)0.0023 (8)
C100.0561 (11)0.0473 (10)0.0452 (10)0.0009 (8)0.0090 (8)0.0025 (8)
C160.0767 (14)0.0502 (11)0.0454 (11)−0.0023 (10)0.0165 (10)−0.0024 (8)
C90.0658 (13)0.0496 (11)0.0492 (11)−0.0001 (9)0.0132 (9)−0.0043 (9)
C130.0698 (14)0.0492 (11)0.0507 (12)0.0003 (10)0.0130 (10)−0.0005 (9)
C150.0837 (15)0.0531 (12)0.0438 (11)−0.0039 (10)0.0210 (10)0.0011 (9)
C60.0526 (11)0.0486 (10)0.0472 (10)0.0016 (8)0.0082 (8)0.0019 (8)
C180.0748 (14)0.0598 (12)0.0422 (10)0.0000 (10)0.0186 (9)0.0041 (9)
C50.0579 (11)0.0487 (11)0.0439 (10)0.0003 (9)0.0084 (8)0.0012 (8)
C20.0617 (13)0.0507 (12)0.0619 (13)−0.0030 (9)0.0038 (10)0.0032 (10)
C120.0644 (13)0.0476 (11)0.0505 (11)0.0016 (9)0.0109 (9)−0.0002 (9)
C190.0724 (13)0.0526 (11)0.0454 (10)−0.0008 (10)0.0143 (9)−0.0043 (9)
C10.0827 (16)0.0550 (13)0.0837 (17)−0.0096 (11)0.0138 (13)0.0068 (12)
C40.0901 (16)0.0577 (13)0.0476 (11)−0.0027 (11)0.0130 (11)−0.0034 (9)
C30.1043 (19)0.0523 (12)0.0586 (13)−0.0098 (12)0.0126 (12)−0.0079 (10)
C70.0866 (16)0.0671 (14)0.0573 (13)−0.0084 (12)0.0348 (12)−0.0037 (10)
C80.111 (2)0.144 (3)0.0552 (15)−0.011 (2)0.0182 (15)0.0164 (17)

Geometric parameters (Å, °)

O1—C111.249 (2)C16—H160.93
O3—C171.364 (2)C9—H90.93
O3—H3O0.82C13—H130.97 (2)
N1—C21.324 (3)C15—H150.93
N1—C61.345 (2)C6—C51.398 (3)
N3—C121.344 (3)C18—C191.384 (3)
N3—N41.378 (2)C18—H180.93
N3—H3N0.91 (2)C5—C41.395 (3)
N4—C131.275 (3)C2—C31.394 (3)
O2—C121.229 (2)C2—C11.502 (3)
N2—C91.340 (3)C19—H190.93
N2—C61.382 (2)C1—H1A0.96
N2—C71.482 (2)C1—H1C0.96
C17—C181.380 (3)C1—H1B0.96
C17—C161.388 (3)C4—C31.366 (3)
C14—C191.388 (3)C4—H40.93
C14—C151.390 (3)C3—H30.93
C14—C131.460 (3)C7—C81.495 (4)
C11—C101.436 (3)C7—H7A0.97
C11—C51.462 (3)C7—H7B0.97
C10—C91.371 (3)C8—H8B0.96
C10—C121.483 (3)C8—H8C0.96
C16—C151.372 (3)C8—H8A0.96
C17—O3—H3O109.5C19—C18—H18120
C2—N1—C6117.86 (17)C4—C5—C6116.04 (18)
C12—N3—N4120.71 (17)C4—C5—C11121.99 (18)
C12—N3—H3N118.4 (15)C6—C5—C11121.97 (17)
N4—N3—H3N120.9 (14)N1—C2—C3121.92 (19)
C13—N4—N3115.59 (17)N1—C2—C1116.5 (2)
C9—N2—C6119.42 (16)C3—C2—C1121.5 (2)
C9—N2—C7120.42 (17)O2—C12—N3123.72 (19)
C6—N2—C7120.13 (16)O2—C12—C10121.92 (18)
O3—C17—C18118.75 (17)N3—C12—C10114.36 (17)
O3—C17—C16121.44 (18)C18—C19—C14121.14 (19)
C18—C17—C16119.80 (18)C18—C19—H19119.4
C19—C14—C15117.65 (18)C14—C19—H19119.4
C19—C14—C13121.51 (18)C2—C1—H1A109.5
C15—C14—C13120.84 (18)C2—C1—H1C109.5
O1—C11—C10124.68 (18)H1A—C1—H1C109.5
O1—C11—C5120.61 (18)C2—C1—H1B109.5
C10—C11—C5114.70 (16)H1A—C1—H1B109.5
C9—C10—C11119.47 (18)H1C—C1—H1B109.5
C9—C10—C12115.90 (17)C3—C4—C5119.9 (2)
C11—C10—C12124.54 (17)C3—C4—H4120.1
C15—C16—C17119.46 (18)C5—C4—H4120.1
C15—C16—H16120.3C4—C3—C2119.8 (2)
C17—C16—H16120.3C4—C3—H3120.1
N2—C9—C10124.95 (18)C2—C3—H3120.1
N2—C9—H9117.5N2—C7—C8112.4 (2)
C10—C9—H9117.5N2—C7—H7A109.1
N4—C13—C14120.13 (19)C8—C7—H7A109.1
N4—C13—H13121.9 (13)N2—C7—H7B109.1
C14—C13—H13117.9 (13)C8—C7—H7B109.1
C16—C15—C14121.96 (18)H7A—C7—H7B107.9
C16—C15—H15119C7—C8—H8B109.5
C14—C15—H15119C7—C8—H8C109.5
N1—C6—N2116.22 (17)H8B—C8—H8C109.5
N1—C6—C5124.45 (18)C7—C8—H8A109.5
N2—C6—C5119.32 (17)H8B—C8—H8A109.5
C17—C18—C19119.94 (18)H8C—C8—H8A109.5
C17—C18—H18120
C12—N3—N4—C13178.2 (2)N2—C6—C5—C4179.03 (18)
O1—C11—C10—C9−175.46 (19)N1—C6—C5—C11−179.47 (18)
C5—C11—C10—C93.8 (3)N2—C6—C5—C11−0.3 (3)
O1—C11—C10—C121.1 (3)O1—C11—C5—C4−3.1 (3)
C5—C11—C10—C12−179.61 (18)C10—C11—C5—C4177.57 (19)
O3—C17—C16—C15−179.0 (2)O1—C11—C5—C6176.24 (19)
C18—C17—C16—C150.5 (3)C10—C11—C5—C6−3.1 (3)
C6—N2—C9—C10−2.4 (3)C6—N1—C2—C30.3 (3)
C7—N2—C9—C10175.4 (2)C6—N1—C2—C1−178.45 (19)
C11—C10—C9—N2−1.3 (3)N4—N3—C12—O23.0 (3)
C12—C10—C9—N2−178.10 (19)N4—N3—C12—C10−176.28 (17)
N3—N4—C13—C14−179.25 (18)C9—C10—C12—O2−5.6 (3)
C19—C14—C13—N4173.6 (2)C11—C10—C12—O2177.8 (2)
C15—C14—C13—N4−5.2 (3)C9—C10—C12—N3173.73 (18)
C17—C16—C15—C141.4 (3)C11—C10—C12—N3−2.9 (3)
C19—C14—C15—C16−2.4 (3)C17—C18—C19—C140.4 (3)
C13—C14—C15—C16176.5 (2)C15—C14—C19—C181.5 (3)
C2—N1—C6—N2−179.19 (17)C13—C14—C19—C18−177.4 (2)
C2—N1—C6—C50.0 (3)C6—C5—C4—C3−0.1 (3)
C9—N2—C6—N1−177.63 (18)C11—C5—C4—C3179.3 (2)
C7—N2—C6—N14.5 (3)C5—C4—C3—C20.4 (4)
C9—N2—C6—C53.2 (3)N1—C2—C3—C4−0.5 (4)
C7—N2—C6—C5−174.73 (19)C1—C2—C3—C4178.2 (2)
O3—C17—C18—C19178.2 (2)C9—N2—C7—C898.6 (3)
C16—C17—C18—C19−1.4 (3)C6—N2—C7—C8−83.5 (3)
N1—C6—C5—C4−0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.91 (2)1.91 (2)2.660 (3)139 (2)
O3—H3O···O2i0.821.902.721 (3)179

Symmetry codes: (i) −x, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2560).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Catalano, V. J., Kar, H. M. & Bennett, B. L. (2000). Inorg. Chem 39, 121–127. [PubMed]
  • Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem 44, 2374–2378. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem 35, 815–819. [PubMed]
  • Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev 104, 349–383. [PubMed]
  • Goswami, S. & Mukherjee, R. (1997). Tetrahedron Lett 38, 1619–1622.
  • Hoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264–271.
  • Mintert, M. & Sheldrick, W. S. (1995). J. Chem. Soc. Dalton Trans pp. 2663–2669.
  • Nakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc 122, 2172–2177.
  • Nakataniz, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am. Chem. Soc 123, 12650–12657. [PubMed]
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem 35, 1021–1026. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull 54, 1175–1178. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography