PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o716.
Published online 2009 March 6. doi:  10.1107/S1600536809007727
PMCID: PMC2969022

Ethyl 2-(4-chloro-2-oxo-2,3-dihydro-1,3-benzothia­zol-3-yl)acetate

Abstract

In the mol­ecule of the title compound, C11H10ClNO3S, the benzene and thia­zole rings are oriented at a dihedral angle of 1.25 (3)°. Intra­molecular C—H(...)O and C—H(...)Cl inter­actions result in the formation of two five-membered rings which both adopt envelope conformations.

Related literature

For a related structure, see: Shao et al. (2001 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o716-scheme1.jpg

Experimental

Crystal data

  • C11H10ClNO3S
  • M r = 271.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o716-efi1.jpg
  • a = 5.4830 (11) Å
  • b = 19.410 (4) Å
  • c = 11.060 (2) Å
  • β = 95.16 (3)°
  • V = 1172.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 294 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.907, T max = 0.952
  • 2363 measured reflections
  • 2132 independent reflections
  • 1460 reflections with I > 2σ(I)
  • R int = 0.044
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.172
  • S = 1.00
  • 2132 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007727/hk2637sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007727/hk2637Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound is widely used in preventing cole from pest and is also useful to kill broad-leaved weed. It is likely to be decomposed in the soil. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C6-C11) and B (S/N/C5/C6/C11) are, of course, planar, and they are oriented at a dihedral angle 1.25 (3)°. So, they are also coplanar. The intramolecular C-H···O and C-H···Cl interactions (Table 1) result in the formations of two five-membered rings C (O3/N/C4/C5/H4A) and D (Cl/N/C4/C10/C11/H4B), adopting envelope conformations with H4A and H4B atoms displaced by -0.284 (3) and -0.661 (3) Å from the planes of the other ring atoms, respectively.

Experimental

For the preparation of the title compound, 4-chlorobenzothiazol-2(3H)-one (10.7 g, 57.5 mmol), ethyl choroacetate (4.3 g, 50 mmol), and the catalyst of potassium iodide (0.63 g, 3 mmol) were added to butyl acetate solution (200 ml) of potassium carbonate (2.72 g, 20 ml) as acid-binding at 353 K. It was stirred for 8 h, and then cooled to room temperature. Water (150 ml) was added to dissolve the product, and inorganic salts were generated. The separated aqueous phase was extracted three times by butyl acetate, and then combined with organic phase product, treated with vacuum distillation at 353 K. Some anhydrous ethanol (about 40 ml) was added to the residual products, the combination was heated into homogeneous phase. Thereafter, precipitated products were cooled (Shao et al., 2001). Crystals suitable for X-ray analysis were obtained by evaporating the solvent slowly at room temperature for about 15 d.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H10ClNO3SF(000) = 560
Mr = 271.71Dx = 1.539 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 5.4830 (11) Åθ = 10–12°
b = 19.410 (4) ŵ = 0.50 mm1
c = 11.060 (2) ÅT = 294 K
β = 95.16 (3)°Block, colorless
V = 1172.3 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1460 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
graphiteθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 0→6
Absorption correction: ψ scan (North et al., 1968)k = 0→23
Tmin = 0.907, Tmax = 0.952l = −13→13
2363 measured reflections3 standard reflections every 120 min
2132 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1P)2 + 0.14P] where P = (Fo2 + 2Fc2)/3
2132 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl−0.37482 (19)0.59357 (6)0.35838 (10)0.0538 (4)
S0.41735 (19)0.71164 (6)0.58220 (10)0.0472 (3)
O1−0.1295 (5)0.67435 (15)0.0880 (3)0.0510 (8)
O20.1424 (5)0.61068 (17)0.2030 (3)0.0568 (8)
O30.3832 (6)0.78020 (17)0.3753 (3)0.0574 (8)
N0.0918 (5)0.69736 (17)0.4015 (3)0.0394 (8)
C1−0.2905 (10)0.5683 (3)−0.0001 (5)0.0751 (16)
H1A−0.28540.5377−0.06810.113*
H1B−0.45430.58530.00300.113*
H1C−0.24130.54380.07350.113*
C2−0.1232 (10)0.6264 (2)−0.0132 (4)0.0595 (12)
H2A0.04220.6091−0.01630.071*
H2B−0.16990.6502−0.08880.071*
C30.0067 (7)0.6585 (2)0.1892 (4)0.0410 (9)
C4−0.0388 (7)0.7124 (2)0.2852 (3)0.0443 (10)
H4A0.01190.75720.25770.053*
H4B−0.21280.71460.29450.053*
C50.2972 (7)0.7356 (2)0.4359 (4)0.0434 (10)
C60.1986 (7)0.6473 (2)0.5897 (3)0.0400 (9)
C70.1815 (9)0.6014 (2)0.6847 (4)0.0522 (11)
H7A0.29500.60210.75250.063*
C8−0.0084 (9)0.5547 (2)0.6758 (4)0.0542 (11)
H8A−0.02450.52360.73860.065*
C9−0.1741 (9)0.5536 (2)0.5752 (4)0.0541 (11)
H9A−0.30220.52210.57080.065*
C10−0.1530 (7)0.5992 (2)0.4797 (4)0.0419 (9)
C110.0334 (7)0.64719 (19)0.4852 (3)0.0384 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0421 (6)0.0549 (7)0.0633 (7)−0.0090 (5)−0.0018 (5)−0.0008 (5)
S0.0446 (6)0.0507 (7)0.0456 (6)−0.0038 (5)−0.0001 (5)−0.0043 (5)
O10.0571 (18)0.0488 (18)0.0446 (16)0.0022 (14)−0.0087 (14)−0.0003 (14)
O20.0544 (18)0.059 (2)0.0563 (19)0.0132 (16)−0.0005 (15)−0.0047 (15)
O30.0624 (19)0.056 (2)0.0527 (18)−0.0162 (16)0.0011 (15)0.0084 (15)
N0.0380 (17)0.0366 (18)0.0427 (18)−0.0012 (14)−0.0014 (14)0.0015 (15)
C10.081 (4)0.069 (4)0.076 (4)−0.017 (3)0.005 (3)−0.010 (3)
C20.075 (3)0.059 (3)0.044 (2)−0.009 (3)0.000 (2)−0.007 (2)
C30.034 (2)0.043 (2)0.046 (2)−0.0049 (18)−0.0014 (17)0.0029 (19)
C40.045 (2)0.042 (2)0.045 (2)0.0046 (19)−0.0004 (18)0.0060 (19)
C50.042 (2)0.045 (2)0.043 (2)0.0010 (19)0.0037 (18)−0.0022 (19)
C60.041 (2)0.038 (2)0.042 (2)0.0050 (18)0.0049 (17)−0.0026 (17)
C70.067 (3)0.046 (3)0.043 (2)0.005 (2)0.007 (2)0.005 (2)
C80.066 (3)0.041 (3)0.056 (3)−0.001 (2)0.011 (2)0.009 (2)
C90.065 (3)0.040 (2)0.059 (3)−0.009 (2)0.018 (2)0.001 (2)
C100.0351 (19)0.040 (2)0.050 (2)0.0047 (18)0.0011 (17)−0.0030 (19)
C110.041 (2)0.032 (2)0.043 (2)0.0057 (17)0.0079 (17)−0.0037 (17)

Geometric parameters (Å, °)

S—C61.738 (4)C2—H2A0.9700
S—C51.755 (4)C2—H2B0.9700
Cl—C101.731 (4)C3—C41.527 (6)
O1—C31.325 (5)C4—H4A0.9700
O1—C21.459 (5)C4—H4B0.9700
O2—C31.191 (5)C6—C71.388 (6)
O3—C51.215 (5)C6—C111.403 (5)
N—C51.373 (5)C7—C81.377 (6)
N—C111.400 (5)C7—H7A0.9300
N—C41.445 (5)C8—C91.372 (7)
C1—C21.469 (7)C8—H8A0.9300
C1—H1A0.9600C9—C101.390 (6)
C1—H1B0.9600C9—H9A0.9300
C1—H1C0.9600C10—C111.381 (5)
C6—S—C591.77 (19)C3—C4—H4B109.1
C3—O1—C2116.7 (3)H4A—C4—H4B107.9
C5—N—C11115.1 (3)O3—C5—N125.6 (4)
C5—N—C4117.7 (3)O3—C5—S124.4 (3)
C11—N—C4127.2 (3)N—C5—S110.0 (3)
C2—C1—H1A109.5C7—C6—C11122.7 (4)
C2—C1—H1B109.5C7—C6—S126.3 (3)
H1A—C1—H1B109.5C11—C6—S111.0 (3)
C2—C1—H1C109.5C8—C7—C6118.1 (4)
H1A—C1—H1C109.5C8—C7—H7A121.0
H1B—C1—H1C109.5C6—C7—H7A121.0
O1—C2—C1110.9 (4)C9—C8—C7120.6 (4)
O1—C2—H2A109.5C9—C8—H8A119.7
C1—C2—H2A109.5C7—C8—H8A119.7
O1—C2—H2B109.5C8—C9—C10120.8 (4)
C1—C2—H2B109.5C8—C9—H9A119.6
H2A—C2—H2B108.1C10—C9—H9A119.6
O2—C3—O1126.0 (4)C11—C10—C9120.5 (4)
O2—C3—C4125.7 (4)C11—C10—Cl122.8 (3)
O1—C3—C4108.3 (3)C9—C10—Cl116.6 (3)
N—C4—C3112.4 (3)C10—C11—N130.8 (4)
N—C4—H4A109.1C10—C11—C6117.3 (4)
C3—C4—H4A109.1N—C11—C6112.0 (3)
N—C4—H4B109.1
C3—O1—C2—C182.2 (5)C6—C7—C8—C90.5 (7)
C2—O1—C3—O24.0 (6)C7—C8—C9—C100.5 (7)
C2—O1—C3—C4−176.4 (3)C8—C9—C10—C11−1.1 (7)
C5—N—C4—C3104.5 (4)C8—C9—C10—Cl−179.3 (4)
C11—N—C4—C3−75.3 (5)C9—C10—C11—N179.7 (4)
O2—C3—C4—N−3.7 (6)Cl—C10—C11—N−2.2 (6)
O1—C3—C4—N176.7 (3)C9—C10—C11—C60.5 (6)
C11—N—C5—O3177.8 (4)Cl—C10—C11—C6178.7 (3)
C4—N—C5—O3−2.0 (6)C5—N—C11—C10−178.2 (4)
C11—N—C5—S−3.0 (4)C4—N—C11—C101.6 (7)
C4—N—C5—S177.2 (3)C5—N—C11—C60.9 (5)
C6—S—C5—O3−177.5 (4)C4—N—C11—C6−179.3 (3)
C6—S—C5—N3.3 (3)C7—C6—C11—C100.5 (6)
C5—S—C6—C7177.6 (4)S—C6—C11—C10−179.1 (3)
C5—S—C6—C11−2.8 (3)C7—C6—C11—N−178.8 (4)
C11—C6—C7—C8−1.0 (6)S—C6—C11—N1.6 (4)
S—C6—C7—C8178.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.972.362.768 (5)105
C4—H4B···Cl0.972.633.105 (4)110

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2637).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Shao, T., Long, Y. D. & Huang, T. B. (2001). Chin. J. Anal. Chem.29, 74–76.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography