PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o939.
Published online 2009 March 31. doi:  10.1107/S1600536809011428
PMCID: PMC2969021

Diethyl (1-hydr­oxy-1-phenyl­ethyl)phospho­nate

Abstract

The title compound, C12H19O4P, has a distorted tetra­hedral geometry around the P atom. The molecules form dimers with R 2 2(10) ring motifs due to inter­molecular O—H(...)O hydrogen bonds. The double-bonded O atom of the phospho­nate group behaves as an acceptor and the hydr­oxy group acts as a donor. Both of the ethyl groups are disordered with occupancies of 0.55:0.45 and 0.725:0.275.

Related literature

For phospho­nate compounds, see: Acar et al. (2009 [triangle]); Tahir et al. (2007 [triangle], 2009 [triangle]). For related structures, see: deMendonca et al. (1996 [triangle]); Feng et al. (2007 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o939-scheme1.jpg

Experimental

Crystal data

  • C12H19O4P
  • M r = 258.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o939-efi2.jpg
  • a = 20.1187 (12) Å
  • b = 8.4488 (14) Å
  • c = 18.4833 (12) Å
  • β = 116.991 (4)°
  • V = 2799.6 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 296 K
  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (MolEN; Fair, 1990 [triangle]) T min = 0.949, T max = 0.969
  • 2753 measured reflections
  • 2664 independent reflections
  • 1726 reflections with I > 2σ(I)
  • R int = 0.011
  • 3 standard reflections frequency: 120 min intensity decay: −1.2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.197
  • S = 1.02
  • 2664 reflections
  • 162 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990 [triangle]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011428/bq2131sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011428/bq2131Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In continuation to the study of phosphonate compounds (Acar et al., 2009; Tahir et al., 2007, 2009), we, herein report the preparation and crystal structure of the title compound (I), (Fig. 1.).

The crystal structures of (II) Diethyl 1-hydroxy-1-(pyridin-2-yl)ethyl phosphonate (Feng et al., 2007) and (III) Diethyl (1-hydroxy-1-methyl-3-phenyl- 2-propynyl)phosphonate (deMendonca et al., 1996) has been reported, previously. The title compound (I) has distorted tetrahedral geometry around phosphorus atom (Table 1.) and differs from (II) as pyridin ring has been replaced by the phenyl ring. It is also dimerized (Fig. 2.) forming ring motifs R22(10) (Bernstein et al., 1995) due to intermolecular H-bonding of O–H···O type (Table 2.). Both of the ethyl groups are disordered having occupancy ratios of 0.55:0.45 and 0.725:0.275, respectively. There does not exist any kind of π-interaction.

Refinement

H-atoms were positioned geometrically, with O-H = 0.82 Å for hydroxy, C-H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and ethylene moieties and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms. The higher values of the refinement parameters and the thermal elipsoids indicated the disorder of ethyl groups. The disorder was resolved using DFIX and EADP commands.

Figures

Fig. 1.
A view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Ethyl groups having higher occupancy ratios are selected.
Fig. 2.
The figure (PLATON: Spek, 2009) which shows the formation of dimers through hydrogen bonding forming R22(10) motifs. Ethyl groups having higher occupancy ratios are selected.

Crystal data

C12H19O4PF(000) = 1104
Mr = 258.24Dx = 1.225 Mg m3
Monoclinic, C2/cMelting point: 383 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 20.1187 (12) ÅCell parameters from 25 reflections
b = 8.4488 (14) Åθ = 10.2–18.1°
c = 18.4833 (12) ŵ = 0.20 mm1
β = 116.991 (4)°T = 296 K
V = 2799.6 (5) Å3Prismatic, colorless
Z = 80.28 × 0.22 × 0.18 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.011
ω/2θ scansθmax = 25.7°, θmin = 2.5°
Absorption correction: ψ scan (MolEN; Fair, 1990)h = −21→24
Tmin = 0.949, Tmax = 0.969k = −10→0
2753 measured reflectionsl = −22→0
2664 independent reflections3 standard reflections every 120 min
1726 reflections with I > 2σ(I) intensity decay: −1.2%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.197w = 1/[σ2(Fo2) + (0.1174P)2 + 1.8226P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2664 reflectionsΔρmax = 0.42 e Å3
162 parametersΔρmin = −0.41 e Å3
6 restraints

Special details

Experimental. The structure was solved by Patterson method using SHELX86. The whole molecule was recognized.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
P10.16206 (5)0.43490 (11)0.02880 (5)0.0706 (3)
O10.20371 (14)0.1469 (3)0.07797 (16)0.0810 (9)
O20.19607 (15)0.4445 (3)−0.02609 (15)0.0956 (11)
O30.1602 (2)0.5940 (3)0.07017 (18)0.1071 (13)
O40.07969 (14)0.3787 (4)−0.01170 (14)0.1054 (12)
C10.17069 (15)0.2904 (3)0.16722 (16)0.0604 (9)
C20.1870 (2)0.3950 (5)0.23087 (19)0.0814 (11)
C30.1507 (2)0.3836 (6)0.2789 (2)0.0939 (15)
C40.0982 (2)0.2709 (5)0.2640 (2)0.0892 (15)
C50.0807 (2)0.1687 (5)0.2010 (2)0.0857 (14)
C60.11694 (18)0.1776 (4)0.1532 (2)0.0728 (11)
C70.20991 (16)0.2986 (3)0.11360 (18)0.0642 (10)
C80.29101 (18)0.3474 (5)0.1597 (2)0.0886 (14)
C9A0.1700 (12)0.7452 (17)0.0422 (8)0.108 (2)0.550
C10A0.0980 (6)0.8190 (12)−0.0106 (7)0.108 (2)0.550
C11A0.0250 (5)0.4095 (9)−0.0930 (4)0.127 (2)0.725
C12A−0.0046 (4)0.2635 (9)−0.1369 (4)0.127 (2)0.725
C12B−0.0142 (11)0.364 (3)−0.1501 (12)0.127 (2)0.275
C9B0.1764 (16)0.753 (2)0.0580 (10)0.108 (2)0.450
C10B0.1267 (7)0.8175 (15)−0.0212 (8)0.108 (2)0.450
C11B0.0478 (10)0.285 (3)−0.0825 (10)0.127 (2)0.275
H20.222650.473500.241410.0978*
H30.162500.453930.321720.1125*
H40.074220.263330.296690.1071*
H10.234420.138940.060470.0971*
H8C0.316740.275610.203970.1151*
H9A0.198920.733460.012510.1301*0.550
H9B0.197600.813350.088500.1301*0.550
H10A0.073970.76033−0.060320.1410*0.550
H10B0.106080.92596−0.022290.1410*0.550
H10C0.066930.819050.016370.1410*0.550
H11A0.047190.47110−0.120640.1519*0.725
H11B−0.015360.47112−0.092110.1519*0.725
H12A−0.025370.28317−0.194140.1646*0.725
H12B−0.042850.22371−0.124240.1646*0.725
H12C0.034710.18690−0.121310.1646*0.725
H50.043990.092450.190030.1028*
H60.104840.106080.110790.0872*
H8A0.294010.452760.180450.1151*
H8B0.313670.344900.123830.1151*
H9C0.227180.758260.064950.1301*0.450
H9D0.173780.819670.099450.1301*0.450
H10D0.075900.79776−0.032400.1410*0.450
H10E0.136590.76753−0.061910.1410*0.450
H10F0.134620.92943−0.021490.1410*0.450
H11C0.030100.18697−0.070320.1519*0.275
H11D0.085970.25945−0.098890.1519*0.275
H12D−0.004590.36632−0.196390.1646*0.275
H12E−0.019320.46968−0.134690.1646*0.275
H12F−0.059480.30603−0.163500.1646*0.276

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0724 (5)0.0812 (6)0.0660 (5)0.0143 (4)0.0382 (4)0.0060 (4)
O10.0893 (16)0.0692 (14)0.1046 (17)0.0017 (12)0.0616 (14)−0.0126 (13)
O20.1085 (19)0.109 (2)0.0973 (17)0.0255 (15)0.0711 (16)0.0183 (15)
O30.170 (3)0.0692 (16)0.1128 (19)0.0340 (16)0.091 (2)0.0190 (14)
O40.0682 (15)0.174 (3)0.0634 (13)0.0083 (16)0.0207 (11)0.0125 (16)
C10.0563 (15)0.0638 (18)0.0544 (14)0.0051 (13)0.0193 (12)0.0006 (13)
C20.080 (2)0.088 (2)0.0687 (19)−0.0086 (18)0.0271 (17)−0.0128 (17)
C30.101 (3)0.119 (3)0.0617 (19)−0.001 (2)0.0370 (19)−0.020 (2)
C40.093 (3)0.117 (3)0.0685 (19)0.005 (2)0.0463 (19)0.006 (2)
C50.082 (2)0.093 (3)0.091 (2)−0.0069 (19)0.047 (2)0.004 (2)
C60.074 (2)0.074 (2)0.0723 (18)−0.0027 (16)0.0350 (16)−0.0083 (16)
C70.0605 (16)0.0632 (18)0.0701 (17)0.0023 (14)0.0308 (14)−0.0045 (15)
C80.0603 (19)0.098 (3)0.098 (2)−0.0004 (18)0.0275 (18)0.001 (2)
C9A0.114 (4)0.088 (2)0.117 (4)−0.001 (2)0.048 (3)−0.003 (2)
C10A0.114 (4)0.088 (2)0.117 (4)−0.001 (2)0.048 (3)−0.003 (2)
C11A0.118 (4)0.119 (4)0.105 (3)−0.008 (3)0.017 (3)−0.009 (3)
C12A0.118 (4)0.119 (4)0.105 (3)−0.008 (3)0.017 (3)−0.009 (3)
C12B0.118 (4)0.119 (4)0.105 (3)−0.008 (3)0.017 (3)−0.009 (3)
C9B0.114 (4)0.088 (2)0.117 (4)−0.001 (2)0.048 (3)−0.003 (2)
C10B0.114 (4)0.088 (2)0.117 (4)−0.001 (2)0.048 (3)−0.003 (2)
C11B0.118 (4)0.119 (4)0.105 (3)−0.008 (3)0.017 (3)−0.009 (3)

Geometric parameters (Å, °)

P1—O21.461 (3)C5—H50.9300
P1—O31.555 (3)C6—H60.9300
P1—O41.551 (3)C8—H8A0.9600
P1—C71.828 (3)C8—H8B0.9600
O1—C71.420 (4)C8—H8C0.9600
O3—C9A1.425 (16)C9A—H9A0.9700
O3—C9B1.424 (19)C9A—H9B0.9700
O4—C11A1.427 (7)C9B—H9C0.9700
O4—C11B1.41 (2)C9B—H9D0.9700
O1—H10.8200C10A—H10A0.9600
C1—C21.387 (4)C10A—H10C0.9600
C1—C61.375 (5)C10A—H10B0.9600
C1—C71.523 (5)C10B—H10E0.9600
C2—C31.385 (6)C10B—H10D0.9600
C3—C41.354 (6)C10B—H10F0.9600
C4—C51.361 (5)C11A—H11A0.9700
C5—C61.379 (6)C11A—H11B0.9700
C7—C81.515 (5)C11B—H11C0.9700
C9A—C10A1.47 (2)C11B—H11D0.9700
C9B—C10B1.45 (2)C12A—H12A0.9600
C11A—C12A1.448 (11)C12A—H12B0.9600
C11B—C12B1.47 (3)C12A—H12C0.9600
C2—H20.9300C12B—H12D0.9600
C3—H30.9300C12B—H12E0.9600
C4—H40.9300
P1···H10E3.1900C8···H22.6800
O1···O23.127 (4)C12B···H12Dix3.0300
O1···O43.009 (4)H1···O2ii1.9100
O1···C9Bi3.366 (17)H1···H10Fi2.5900
O1···O2ii2.709 (4)H1···H8B2.2900
O1···C11B3.399 (19)H2···C82.6800
O1···C10Bi3.306 (13)H2···H8A2.2000
O2···O1ii2.709 (4)H3···O2viii2.7200
O2···O13.127 (4)H4···H10Eviii2.3400
O3···C23.238 (5)H6···O12.3500
O4···C63.266 (4)H8A···C22.7500
O4···O13.009 (4)H8A···O32.8000
O1···H10Fi2.5200H8A···C5vii3.0800
O1···H9Bi2.8300H8A···H22.2000
O1···H10Bi2.7300H8B···O22.8300
O1···H9Di2.8900H8B···H11Dii2.4300
O1···H62.3500H8B···H12.2900
O2···H9A2.5400H8C···C23.0400
O2···H3iii2.7200H9A···H9Ax2.3200
O2···H1ii1.9100H9A···O22.5400
O2···H8B2.8300H9B···O1vi2.8300
O2···H11A2.7100H9B···C3vii2.9800
O2···H11D2.5400H9C···C3vii3.0100
O3···H8A2.8000H9D···O1vi2.8900
C2···O33.238 (5)H10A···C5iv3.0800
C3···C12Biv3.44 (2)H10B···O1vi2.7300
C3···C9Bv3.59 (2)H10B···H11Cvi2.6000
C6···O43.266 (4)H10C···H11Civ2.5600
C9B···O1vi3.366 (17)H10E···C4iii2.9700
C9B···C3vii3.59 (2)H10E···P13.1900
C10B···O1vi3.306 (13)H10E···H4iii2.3400
C11B···O13.399 (19)H10F···H1vi2.5900
C12B···C3iv3.44 (2)H10F···O1vi2.5200
C2···H8A2.7500H11A···O22.7100
C2···H8C3.0400H11C···H10Bi2.6000
C3···H12Eiv3.0400H11C···H10Civ2.5600
C3···H9Bv2.9800H11D···O22.5400
C3···H9Cv3.0100H11D···H8Bii2.4300
C4···H12Eiv3.1000H12D···C12Bix3.0300
C4···H10Eviii2.9700H12D···H12Dix2.0700
C5···H10Aiv3.0800H12E···C3iv3.0400
C5···H8Av3.0800H12E···C4iv3.1000
O2—P1—O3114.63 (18)H8A—C8—H8C109.00
O2—P1—O4114.61 (15)H8B—C8—H8C109.00
O2—P1—C7113.59 (16)O3—C9A—H9A109.00
O3—P1—O4104.1 (2)O3—C9A—H9B109.00
O3—P1—C7104.11 (14)C10A—C9A—H9A109.00
O4—P1—C7104.63 (16)C10A—C9A—H9B109.00
P1—O3—C9A123.9 (7)H9A—C9A—H9B108.00
P1—O3—C9B132.8 (10)O3—C9B—H9D109.00
P1—O4—C11A126.6 (4)C10B—C9B—H9C109.00
P1—O4—C11B123.8 (9)O3—C9B—H9C109.00
C7—O1—H1109.00H9C—C9B—H9D107.00
C2—C1—C7122.0 (3)C10B—C9B—H9D109.00
C6—C1—C7120.3 (3)C9A—C10A—H10B109.00
C2—C1—C6117.7 (3)C9A—C10A—H10A109.00
C1—C2—C3120.6 (4)C9A—C10A—H10C109.00
C2—C3—C4120.5 (4)H10A—C10A—H10B110.00
C3—C4—C5119.7 (4)H10A—C10A—H10C109.00
C4—C5—C6120.4 (4)H10B—C10A—H10C109.00
C1—C6—C5121.1 (3)C9B—C10B—H10E109.00
P1—C7—C1111.1 (2)C9B—C10B—H10F110.00
P1—C7—C8108.9 (2)C9B—C10B—H10D109.00
P1—C7—O1105.7 (2)H10D—C10B—H10E109.00
O1—C7—C8110.6 (3)H10D—C10B—H10F109.00
C1—C7—C8113.0 (3)H10E—C10B—H10F110.00
O1—C7—C1107.4 (2)O4—C11A—H11A109.00
O3—C9A—C10A111.4 (16)O4—C11A—H11B109.00
O3—C9B—C10B114.3 (16)C12A—C11A—H11A109.00
O4—C11A—C12A111.1 (6)C12A—C11A—H11B109.00
O4—C11B—C12B112.8 (19)H11A—C11A—H11B108.00
C1—C2—H2120.00O4—C11B—H11C109.00
C3—C2—H2120.00C12B—C11B—H11D109.00
C2—C3—H3120.00O4—C11B—H11D109.00
C4—C3—H3120.00C12B—C11B—H11C109.00
C3—C4—H4120.00H11C—C11B—H11D108.00
C5—C4—H4120.00C11A—C12A—H12B109.00
C4—C5—H5120.00C11A—C12A—H12C109.00
C6—C5—H5120.00C11A—C12A—H12A109.00
C1—C6—H6119.00H12A—C12A—H12C110.00
C5—C6—H6119.00H12B—C12A—H12C109.00
C7—C8—H8A109.00H12A—C12A—H12B109.00
C7—C8—H8B109.00C11B—C12B—H12D109.00
C7—C8—H8C110.00C11B—C12B—H12E110.00
H8A—C8—H8B109.00H12D—C12B—H12E110.00
O2—P1—O3—C9A17.3 (11)P1—O4—C11A—C12A121.8 (6)
O4—P1—O3—C9A−108.6 (11)C6—C1—C2—C30.9 (5)
C7—P1—O3—C9A142.0 (11)C7—C1—C2—C3−179.5 (3)
O2—P1—O4—C11A−33.3 (5)C2—C1—C6—C5−0.2 (5)
O3—P1—O4—C11A92.7 (5)C7—C1—C6—C5−179.8 (3)
C7—P1—O4—C11A−158.4 (5)C2—C1—C7—P1−87.5 (3)
O2—P1—C7—O1−62.4 (3)C2—C1—C7—O1157.5 (3)
O2—P1—C7—C1−178.45 (19)C2—C1—C7—C835.3 (4)
O2—P1—C7—C856.5 (3)C6—C1—C7—P192.2 (3)
O3—P1—C7—O1172.3 (3)C6—C1—C7—O1−22.9 (4)
O3—P1—C7—C156.2 (3)C6—C1—C7—C8−145.1 (3)
O3—P1—C7—C8−68.9 (3)C1—C2—C3—C4−0.6 (6)
O4—P1—C7—O163.4 (3)C2—C3—C4—C5−0.4 (6)
O4—P1—C7—C1−52.8 (2)C3—C4—C5—C61.1 (6)
O4—P1—C7—C8−177.8 (2)C4—C5—C6—C1−0.8 (6)
P1—O3—C9A—C10A95.4 (14)

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, −y+1/2, −z; (iii) x, −y+1, z−1/2; (iv) −x, −y+1, −z; (v) −x+1/2, y−1/2, −z+1/2; (vi) x, y+1, z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) x, −y+1, z+1/2; (ix) −x, y, −z−1/2; (x) −x+1/2, −y+3/2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.82001.91002.709 (4)163.00

Symmetry codes: (ii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2131).

References

  • Acar, N., Tahir, M. N., Yılmaz, H., Chishti, M. S. A. & Malik, M. A. (2009). Acta Cryst. E65, o481. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 155-1573.
  • deMendonca, D. J., Hammond, G. B., Golen, J. A. & Williard, P. G. (1996). Z. Kristallogr.211, 833–834.
  • Enraf–Nonius (1993). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Fair, C. K. (1990). MolEN Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Feng, D., Chen, R., Huang, Y. & Song, H. (2007). Heteroat. Chem.18, 347–353.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tahir, M. N., Acar, N., Yilmaz, H., Danish, M. & Ülkü, D. (2007). Acta Cryst. E63, o3817–o3818.
  • Tahir, M. N., Acar, N., Yilmaz, H., Tariq, M. I. & Ülkü, D. (2009). Acta Cryst. E65, o562. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography