PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o916.
Published online 2009 March 28. doi:  10.1107/S1600536809010526
PMCID: PMC2969019

3,3,6,6-Tetra­methyl-9-phenyl-3,4,5,6-tetra­hydro-9H-xanthene-1,8(2H,7H)-dione

Abstract

In the title compound, C23H26O3, the three six-membered rings of the xanthene system are non-planar, having total puckering amplitudes, Q T, of 0.443 (2), 0.202 (2) and 0.449 (2) Å. The central ring adopts a boat conformation and the outer rings adopt sofa conformations. The crystal structure is stabilized by van der Waals inter­actions.

Related literature

For the biological and pharmaceutical properties of xanthenes, see: Hideo (1981 [triangle]); Lambert et al. (1997 [triangle]); Poupelin et al. (1978 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o916-scheme1.jpg

Experimental

Crystal data

  • C23H26O3
  • M r = 350.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o916-efi1.jpg
  • a = 6.0562 (5) Å
  • b = 19.7680 (18) Å
  • c = 16.4325 (13) Å
  • β = 97.924 (3)°
  • V = 1948.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.17 × 0.15 × 0.11 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.987, T max = 0.992
  • 11861 measured reflections
  • 4284 independent reflections
  • 2825 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.138
  • S = 1.03
  • 4284 reflections
  • 239 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010526/at2748sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010526/at2748Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the DST for the FIST programme.

supplementary crystallographic information

Comment

Xanthenes are an important class of organic compounds that received considerable attention from many pharmaceuticals and organic chemists, actually because of the broad spectrum of their biological and pharmaceutical properties such as agricultural bactericide effects (Hideo, 1981), photodynamic therapy, anti-inflammatory activities (Poupelin et al., 1978) and antiviral effects (Lambert et al., 1997). Considering the importance of the title compound (I), we report here the crystal structure of it.

In the molecule of (I), (Fig. 1), rings A(C14—C6), B(O1/C6/C5/C4/C3/C2) and C(C2—C7) are not planar, having total puckering amplitudes, QT, of 0.443 (2), 0.202 (2) and 0.449 (2) Å, respectively. They adopt envelope [Φ = 12.2 (3) and θ = 130.5 (2) °], boat [Φ = 351.8 (5) and θ = 102.5 (5) °] and envelope [Φ = 45.2 (4) and θ = 125.6 (2) °] conformations (Cremer & Pople, 1975). In rings A and C, atoms C13 and C8 are displaced by 0.609 (1) and 0.616 (1) Å from the plane of the other ring atoms, respectively. Ring D(C15—C20) is, of course, planar.

The crystal structure is stabilized by van der Waals interactions.

Experimental

A mixture of benzaldehyde (10 mmol), 5, 5-dimethyl-1,3-cyclohexanedione (2. 20 mmol) were mixed along with 20 ml of ethanol, to that ammonium acetate (10 mmol) was added and refluxed on waterbath for about 1 h. The progress of the reaction was monitored by TLC. After conforming that the reaction got completed, the reaction mixture was allowed to cool to room temperature and left aside for a day. Yellow colour solid crystals were started growing from the mother liquor. It was filtered and washed with diethyl ether to ensure pure crystals [yield: 91%, m.p. 478–480 K].

Refinement

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C) for CH, CH2 and Uiso(H) = 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C23H26O3F(000) = 752
Mr = 350.44Dx = 1.195 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2500 reflections
a = 6.0562 (5) Åθ = 2–27°
b = 19.7680 (18) ŵ = 0.08 mm1
c = 16.4325 (13) ÅT = 293 K
β = 97.924 (3)°Needle, colourless
V = 1948.5 (3) Å30.17 × 0.15 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer4284 independent reflections
Radiation source: fine-focus sealed tube2825 reflections with I > 2σ(I)
graphiteRint = 0.035
ω scansθmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −5→7
Tmin = 0.987, Tmax = 0.992k = −25→25
11861 measured reflectionsl = −21→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0661P)2 + 0.1411P] where P = (Fo2 + 2Fc2)/3
4284 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.2342 (3)0.26716 (7)0.39187 (9)0.0364 (4)
C30.0380 (2)0.27207 (7)0.34340 (9)0.0353 (3)
C4−0.0306 (3)0.22377 (7)0.27309 (9)0.0363 (4)
H4−0.18660.21100.27410.044*
C50.1110 (3)0.16067 (8)0.28674 (9)0.0379 (4)
C60.3004 (3)0.15872 (7)0.33973 (9)0.0390 (4)
C70.3232 (3)0.31533 (8)0.45793 (9)0.0424 (4)
H7A0.48110.32200.45620.051*
H7B0.30680.29560.51080.051*
C80.2064 (3)0.38413 (8)0.45065 (10)0.0450 (4)
C9−0.0457 (3)0.37197 (10)0.43150 (11)0.0544 (5)
H9A−0.09700.35160.47920.065*
H9B−0.11990.41530.42210.065*
C10−0.1139 (3)0.32744 (9)0.35821 (10)0.0447 (4)
C110.0384 (3)0.09875 (8)0.24133 (10)0.0479 (4)
C120.1983 (4)0.03983 (9)0.24839 (11)0.0607 (5)
H12A0.29870.04520.20770.073*
H12B0.1141−0.00140.23550.073*
C130.3369 (3)0.03208 (8)0.33293 (10)0.0497 (4)
C140.4530 (3)0.09951 (8)0.35552 (11)0.0504 (4)
H14A0.51420.09880.41330.060*
H14B0.57610.10480.32400.060*
C15−0.0128 (3)0.25771 (7)0.19070 (9)0.0360 (4)
C160.1833 (3)0.28868 (9)0.17640 (10)0.0457 (4)
H160.30730.28740.21670.055*
C170.1970 (3)0.32159 (9)0.10281 (11)0.0534 (5)
H170.32970.34210.09390.064*
C180.0143 (4)0.32390 (9)0.04283 (11)0.0562 (5)
H180.02280.3465−0.00630.067*
C19−0.1807 (3)0.29273 (10)0.05584 (11)0.0601 (5)
H19−0.30390.29390.01530.072*
C20−0.1939 (3)0.25964 (9)0.12930 (10)0.0495 (4)
H20−0.32610.23840.13750.059*
C210.2861 (3)0.42570 (9)0.38171 (13)0.0613 (5)
H21A0.21370.46900.37830.092*
H21B0.25020.40220.33050.092*
H21C0.44460.43190.39310.092*
C220.2621 (4)0.42158 (12)0.53235 (13)0.0775 (7)
H22A0.42100.42410.54670.116*
H22B0.19900.39770.57450.116*
H22C0.20120.46650.52710.116*
C230.5131 (4)−0.02346 (10)0.32996 (14)0.0785 (7)
H23A0.4405−0.06540.31360.118*
H23B0.5982−0.02850.38340.118*
H23C0.6106−0.01110.29100.118*
C240.1837 (4)0.01311 (11)0.39644 (13)0.0756 (6)
H24A0.1096−0.02880.38080.113*
H24B0.07480.04810.39870.113*
H24C0.27100.00820.44950.113*
O10.37769 (18)0.21342 (5)0.38742 (7)0.0448 (3)
O2−0.2918 (2)0.33452 (7)0.31414 (8)0.0672 (4)
O3−0.1434 (2)0.09604 (6)0.19873 (9)0.0699 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0412 (9)0.0298 (8)0.0381 (8)0.0020 (7)0.0052 (7)0.0017 (6)
C30.0360 (8)0.0329 (8)0.0367 (8)0.0003 (7)0.0043 (6)−0.0007 (6)
C40.0323 (8)0.0352 (8)0.0397 (8)−0.0005 (7)−0.0007 (6)−0.0004 (6)
C50.0453 (9)0.0316 (8)0.0358 (8)0.0009 (7)0.0018 (7)0.0005 (6)
C60.0431 (9)0.0298 (8)0.0428 (8)0.0002 (7)0.0018 (7)−0.0019 (7)
C70.0490 (10)0.0378 (9)0.0388 (8)−0.0017 (8)−0.0003 (7)−0.0023 (7)
C80.0460 (10)0.0368 (9)0.0524 (10)0.0014 (8)0.0074 (8)−0.0094 (7)
C90.0492 (11)0.0530 (11)0.0636 (11)0.0044 (9)0.0172 (9)−0.0163 (9)
C100.0398 (9)0.0451 (10)0.0501 (9)0.0030 (8)0.0096 (8)−0.0026 (8)
C110.0638 (12)0.0382 (9)0.0386 (9)−0.0004 (8)−0.0042 (8)−0.0007 (7)
C120.0880 (15)0.0391 (10)0.0497 (10)0.0125 (10)−0.0097 (10)−0.0101 (8)
C130.0689 (12)0.0319 (9)0.0455 (9)0.0069 (8)−0.0020 (8)−0.0009 (7)
C140.0518 (10)0.0384 (9)0.0579 (10)0.0084 (8)−0.0028 (8)−0.0019 (8)
C150.0395 (8)0.0305 (8)0.0363 (8)0.0027 (7)−0.0006 (6)−0.0030 (6)
C160.0452 (10)0.0467 (10)0.0440 (9)−0.0038 (8)0.0018 (7)−0.0049 (8)
C170.0653 (12)0.0435 (10)0.0540 (10)−0.0106 (9)0.0178 (9)−0.0038 (8)
C180.0869 (15)0.0412 (10)0.0406 (9)0.0031 (10)0.0093 (9)0.0046 (8)
C190.0665 (13)0.0629 (12)0.0457 (10)0.0049 (11)−0.0113 (9)0.0072 (9)
C200.0447 (10)0.0511 (11)0.0491 (10)−0.0035 (8)−0.0065 (8)0.0037 (8)
C210.0562 (12)0.0397 (10)0.0881 (14)0.0017 (9)0.0101 (10)0.0126 (10)
C220.0799 (16)0.0678 (14)0.0827 (15)0.0012 (12)0.0036 (12)−0.0377 (12)
C230.1014 (17)0.0442 (11)0.0823 (15)0.0268 (12)−0.0138 (13)−0.0109 (10)
C240.0986 (17)0.0577 (13)0.0692 (13)−0.0073 (12)0.0070 (12)0.0173 (10)
O10.0426 (6)0.0322 (6)0.0551 (7)0.0053 (5)−0.0092 (5)−0.0062 (5)
O20.0462 (8)0.0734 (10)0.0784 (9)0.0206 (7)−0.0042 (7)−0.0149 (7)
O30.0744 (10)0.0486 (8)0.0766 (9)−0.0028 (7)−0.0251 (8)−0.0129 (7)

Geometric parameters (Å, °)

C2—C31.340 (2)C13—C241.536 (3)
C2—O11.3809 (17)C13—C231.536 (3)
C2—C71.488 (2)C14—H14A0.9700
C3—C101.471 (2)C14—H14B0.9700
C3—C41.512 (2)C15—C201.384 (2)
C4—C51.513 (2)C15—C161.385 (2)
C4—C151.528 (2)C16—C171.386 (2)
C4—H40.9800C16—H160.9300
C5—C61.341 (2)C17—C181.377 (3)
C5—C111.469 (2)C17—H170.9300
C6—O11.3788 (18)C18—C191.375 (3)
C6—C141.492 (2)C18—H180.9300
C7—C81.530 (2)C19—C201.385 (2)
C7—H7A0.9700C19—H190.9300
C7—H7B0.9700C20—H200.9300
C8—C221.529 (2)C21—H21A0.9600
C8—C211.531 (2)C21—H21B0.9600
C8—C91.534 (2)C21—H21C0.9600
C9—C101.503 (2)C22—H22A0.9600
C9—H9A0.9700C22—H22B0.9600
C9—H9B0.9700C22—H22C0.9600
C10—O21.221 (2)C23—H23A0.9600
C11—O31.222 (2)C23—H23B0.9600
C11—C121.509 (2)C23—H23C0.9600
C12—C131.529 (2)C24—H24A0.9600
C12—H12A0.9700C24—H24B0.9600
C12—H12B0.9700C24—H24C0.9600
C13—C141.529 (2)
C3—C2—O1122.50 (13)C14—C13—C23109.43 (16)
C3—C2—C7126.13 (14)C24—C13—C23109.54 (17)
O1—C2—C7111.33 (13)C6—C14—C13112.88 (14)
C2—C3—C10118.61 (14)C6—C14—H14A109.0
C2—C3—C4122.44 (13)C13—C14—H14A109.0
C10—C3—C4118.94 (13)C6—C14—H14B109.0
C3—C4—C5108.46 (12)C13—C14—H14B109.0
C3—C4—C15110.74 (12)H14A—C14—H14B107.8
C5—C4—C15112.66 (12)C20—C15—C16118.41 (14)
C3—C4—H4108.3C20—C15—C4120.80 (14)
C5—C4—H4108.3C16—C15—C4120.77 (13)
C15—C4—H4108.3C15—C16—C17120.76 (16)
C6—C5—C11118.38 (14)C15—C16—H16119.6
C6—C5—C4122.44 (13)C17—C16—H16119.6
C11—C5—C4119.17 (14)C18—C17—C16120.09 (17)
C5—C6—O1122.64 (13)C18—C17—H17120.0
C5—C6—C14126.09 (14)C16—C17—H17120.0
O1—C6—C14111.27 (13)C19—C18—C17119.77 (16)
C2—C7—C8113.26 (13)C19—C18—H18120.1
C2—C7—H7A108.9C17—C18—H18120.1
C8—C7—H7A108.9C18—C19—C20120.08 (17)
C2—C7—H7B108.9C18—C19—H19120.0
C8—C7—H7B108.9C20—C19—H19120.0
H7A—C7—H7B107.7C15—C20—C19120.88 (17)
C22—C8—C7108.54 (15)C15—C20—H20119.6
C22—C8—C21109.63 (16)C19—C20—H20119.6
C7—C8—C21110.20 (14)C8—C21—H21A109.5
C22—C8—C9110.41 (15)C8—C21—H21B109.5
C7—C8—C9108.23 (14)H21A—C21—H21B109.5
C21—C8—C9109.80 (15)C8—C21—H21C109.5
C10—C9—C8114.33 (14)H21A—C21—H21C109.5
C10—C9—H9A108.7H21B—C21—H21C109.5
C8—C9—H9A108.7C8—C22—H22A109.5
C10—C9—H9B108.7C8—C22—H22B109.5
C8—C9—H9B108.7H22A—C22—H22B109.5
H9A—C9—H9B107.6C8—C22—H22C109.5
O2—C10—C3120.52 (15)H22A—C22—H22C109.5
O2—C10—C9122.07 (15)H22B—C22—H22C109.5
C3—C10—C9117.34 (15)C13—C23—H23A109.5
O3—C11—C5120.72 (16)C13—C23—H23B109.5
O3—C11—C12121.90 (15)H23A—C23—H23B109.5
C5—C11—C12117.37 (15)C13—C23—H23C109.5
C11—C12—C13114.43 (14)H23A—C23—H23C109.5
C11—C12—H12A108.7H23B—C23—H23C109.5
C13—C12—H12A108.7C13—C24—H24A109.5
C11—C12—H12B108.7C13—C24—H24B109.5
C13—C12—H12B108.7H24A—C24—H24B109.5
H12A—C12—H12B107.6C13—C24—H24C109.5
C12—C13—C14108.04 (14)H24A—C24—H24C109.5
C12—C13—C24109.55 (17)H24B—C24—H24C109.5
C14—C13—C24110.41 (15)C6—O1—C2117.81 (11)
C12—C13—C23109.85 (14)
O1—C2—C3—C10173.83 (13)C6—C5—C11—O3172.63 (16)
C7—C2—C3—C10−3.8 (2)C4—C5—C11—O3−6.6 (2)
O1—C2—C3—C4−7.5 (2)C6—C5—C11—C12−8.5 (2)
C7—C2—C3—C4174.82 (14)C4—C5—C11—C12172.31 (15)
C2—C3—C4—C519.19 (19)O3—C11—C12—C13−145.42 (19)
C10—C3—C4—C5−162.15 (13)C5—C11—C12—C1335.7 (2)
C2—C3—C4—C15−104.92 (16)C11—C12—C13—C14−53.6 (2)
C10—C3—C4—C1573.74 (17)C11—C12—C13—C2466.7 (2)
C3—C4—C5—C6−16.4 (2)C11—C12—C13—C23−172.93 (18)
C15—C4—C5—C6106.60 (16)C5—C6—C14—C13−23.1 (2)
C3—C4—C5—C11162.83 (13)O1—C6—C14—C13156.85 (14)
C15—C4—C5—C11−74.21 (18)C12—C13—C14—C646.2 (2)
C11—C5—C6—O1−177.46 (14)C24—C13—C14—C6−73.61 (19)
C4—C5—C6—O11.7 (2)C23—C13—C14—C6165.75 (16)
C11—C5—C6—C142.4 (2)C3—C4—C15—C20−125.34 (15)
C4—C5—C6—C14−178.36 (15)C5—C4—C15—C20112.98 (16)
C3—C2—C7—C8−17.9 (2)C3—C4—C15—C1653.10 (19)
O1—C2—C7—C8164.25 (13)C5—C4—C15—C16−68.58 (18)
C2—C7—C8—C22164.25 (16)C20—C15—C16—C170.9 (2)
C2—C7—C8—C21−75.68 (18)C4—C15—C16—C17−177.63 (15)
C2—C7—C8—C944.40 (18)C15—C16—C17—C180.1 (3)
C22—C8—C9—C10−172.24 (16)C16—C17—C18—C19−0.8 (3)
C7—C8—C9—C10−53.6 (2)C17—C18—C19—C200.6 (3)
C21—C8—C9—C1066.8 (2)C16—C15—C20—C19−1.1 (2)
C2—C3—C10—O2178.27 (16)C4—C15—C20—C19177.38 (16)
C4—C3—C10—O2−0.4 (2)C18—C19—C20—C150.4 (3)
C2—C3—C10—C9−4.7 (2)C5—C6—O1—C212.5 (2)
C4—C3—C10—C9176.63 (14)C14—C6—O1—C2−167.45 (13)
C8—C9—C10—O2−148.28 (17)C3—C2—O1—C6−9.5 (2)
C8—C9—C10—C334.7 (2)C7—C2—O1—C6168.44 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2748).

References

  • Bruker (1998). SADABS Bruker AXS Inc., Maddison, Wisconsin, USA.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Hideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.
  • Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Intl Appl. WO 9706178.
  • Poupelin, J. P., Saint-Rut, G., Foussard-Blanpin, O., Narcisse, G., Uchida- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem.13, 67–71.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography