PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m385.
Published online 2009 March 11. doi:  10.1107/S1600536809007910
PMCID: PMC2969017

Phyllo-poly[[μ2-1,4-bis­(cyclo­hexyl­sulfanylmeth­yl)benzene-κ2 S:S′](μ2-nitrato-κ2 O:O′)silver(I)]

Abstract

The title compound, [Ag(NO3)(C20H30S2)]n, was synthesized by the reaction of silver nitrate and 1,4-bis­(cyclo­hexyl­thio­meth­yl)benzene (bctmb) in acetonitrile. The coordination polymer exhibits a two-dimensional layer structure. The layers are wave-like and parallel to the crystallographic ac plane; AgI ions are linked by the bctmb ligands and nitrate anions along the crystallographic a and c directions, respectively. In addition, the crystal structure is stabilized by C—H(...)O hydrogen bonds.

Related literature

For the synthesis of the ligand, see: Kim et al. (2008 [triangle]). For related structures, see: Kim et al. (2007 [triangle]). For structures with Ni(II) in trigonal-pyramidal coordination, see: Cho et al. (2007 [triangle]). For potential applications of coordination polymers, see: Young & Hanton (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m385-scheme1.jpg

Experimental

Crystal data

  • [Ag(NO3)(C20H30S2)]
  • M r = 504.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m385-efi5.jpg
  • a = 12.1053 (6) Å
  • b = 20.719 (1) Å
  • c = 8.5973 (4) Å
  • β = 92.256 (1)°
  • V = 2154.61 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 173 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.724, T max = 0.894
  • 13362 measured reflections
  • 4804 independent reflections
  • 3174 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.115
  • S = 1.04
  • 4804 reflections
  • 238 parameters
  • H-atom parameters constrained
  • Δρmax = 0.90 e Å−3
  • Δρmin = −1.00 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2000 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007910/lx2093sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007910/lx2093Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Gyeongsang National University. The Korea Research Foundation (KRF-2007–357-C00056) is acknowledged by THK for support.

supplementary crystallographic information

Comment

An increasing interest has been directed toward the study of new coordination polymers owing to potential applications (Young & Hanton, 2008). The scant research on the coordination polymers with dithioether ligands prompted us to investigate the possibility of diverse structures. Therefore, we designed and synthesized 1,4-bis(cyclohexylthiomethyl)benzene (bctmb) as a dithioether ligand. Synthesis of the bctmb ligand has been published previously (Kim, et al., 2008).

The title compound, phyllo-poly[(µ2-nitrato-κ2O:O')(µ2-1,4-bis(cyclohexylthiomethyl)benzene- κ2S:S') silver(I)], [Ag(NO3)(C20H30S2)]n was synthesized by self-assembly of silver nitrate and the bctmb ligand in acetonitrile (Kim et al., 2007) (Fig. 1). The coordination number of Ag is four and the Ag atom is a slightly distorted trigonal pyramidal geometry, in which an O atom (O2) from nitrate anion and two S atoms from two different bctmb ligands form a basal plane and an O atom (O1) from neighboring nitrate anion is occupied apical position. The Ag atom is slightly apart from this basal plane (0.123 (2) Å). Each AgI ions is linked by the bctmb ligands to form 1D chain along the a axis. These chains are connected by bidentate nitrate anions in a bridging mode to generate 2D layer structure, as shown in Fig. 2. The layers are wavy and parallel to the crystallographic ac plane. The packing structure is stabilized by C—H···O hydrogen bonds (Table 1 & Fig. 2).

Experimental

The title compound was synthesized by self-assembly of stoichiometric amounts of silver nitrate and the bctmb ligands in acetonitrile (Kim et al., 2007). Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of the title compound in acetonitrile.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso =1.2Ueq(C) for aromatic and 0.97 Å, Uiso = 1.2Ueq(C) for CH2 atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity.
Fig. 2.
Two-dimensional network structure showing C—H···O interactions. All H atoms except those relating C—H···O interactions have been omitted for clarity. [Symmetry codes: (i) x-1, -y+1/2, z-1/2; ...

Crystal data

[Ag(NO3)(C20H30S2)]F(000) = 1040
Mr = 504.44Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4031 reflections
a = 12.1053 (6) Åθ = 2.6–27.6°
b = 20.719 (1) ŵ = 1.15 mm1
c = 8.5973 (4) ÅT = 173 K
β = 92.256 (1)°Plate, colorless
V = 2154.61 (18) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer4804 independent reflections
Radiation source: fine-focus sealed tube3174 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 10.0 pixels mm-1θmax = 27.3°, θmin = 1.7°
[var phi] and ω scansh = −12→15
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −26→23
Tmin = 0.724, Tmax = 0.894l = −11→9
13362 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0558P)2 + 0.7474P] where P = (Fo2 + 2Fc2)/3
4804 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = −1.00 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.60132 (3)0.147912 (17)0.59553 (4)0.03340 (12)
S10.40490 (8)0.10911 (5)0.59796 (11)0.0245 (2)
S2−0.20353 (9)0.11318 (6)0.59401 (12)0.0332 (3)
O10.5747 (3)0.16475 (16)0.8814 (4)0.0538 (10)
O20.5492 (4)0.2420 (2)1.0367 (7)0.1033 (19)
O30.6861 (4)0.2458 (2)0.9036 (6)0.1007 (19)
N10.6032 (3)0.2176 (2)0.9376 (4)0.0391 (7)
C10.3798 (4)0.1476 (2)0.2840 (5)0.0330 (10)
H1A0.46080.15440.28670.040*
H1B0.34420.18860.31350.040*
C20.3396 (4)0.1280 (2)0.1194 (5)0.0371 (11)
H2A0.25790.12490.11540.044*
H2B0.36080.16180.04490.044*
C30.3879 (4)0.0640 (2)0.0714 (5)0.0381 (11)
H3A0.46910.06820.06580.046*
H3B0.35770.0522−0.03350.046*
C40.3611 (4)0.0111 (2)0.1862 (5)0.0376 (11)
H4A0.3976−0.02950.15610.045*
H4B0.28020.00360.18340.045*
C50.4004 (4)0.0300 (2)0.3512 (5)0.0318 (10)
H5A0.48210.03300.35640.038*
H5B0.3784−0.00400.42500.038*
C60.3511 (3)0.09466 (19)0.3992 (4)0.0236 (9)
H60.26880.09030.40040.028*
C70.3416 (3)0.1852 (2)0.6496 (5)0.0250 (9)
H7A0.37160.19860.75340.030*
H7B0.36290.21850.57370.030*
C80.2171 (3)0.1830 (2)0.6532 (4)0.0242 (9)
C90.1638 (4)0.1424 (2)0.7516 (5)0.0341 (10)
H90.20630.11340.81530.041*
C100.0497 (4)0.1424 (2)0.7606 (5)0.0346 (10)
H100.01500.11370.82970.041*
C11−0.0144 (3)0.1847 (2)0.6682 (5)0.0312 (10)
C120.0387 (4)0.2255 (2)0.5700 (5)0.0347 (11)
H12−0.00350.25470.50680.042*
C130.1531 (3)0.2248 (2)0.5610 (5)0.0303 (10)
H130.18780.25310.49130.036*
C14−0.1381 (3)0.1853 (2)0.6764 (5)0.0393 (12)
H14A−0.16760.22370.62000.047*
H14B−0.15790.18940.78670.047*
C15−0.1609 (4)0.1157 (2)0.3921 (5)0.0313 (10)
H15−0.13990.16110.36650.038*
C16−0.0612 (4)0.0726 (3)0.3729 (5)0.0459 (13)
H16A−0.07930.02820.40580.055*
H16B0.00090.08840.44100.055*
C17−0.0258 (4)0.0716 (3)0.2038 (6)0.0602 (16)
H17A−0.00050.11510.17370.072*
H17B0.03650.04110.19350.072*
C18−0.1225 (4)0.0509 (3)0.0960 (5)0.0504 (14)
H18A−0.09990.0524−0.01330.060*
H18B−0.14330.00590.12000.060*
C19−0.2211 (4)0.0948 (2)0.1153 (5)0.0391 (7)
H19A−0.20180.13920.08380.047*
H19B−0.28340.07980.04640.047*
C20−0.2563 (4)0.0952 (3)0.2821 (5)0.0435 (12)
H20A−0.28150.05150.31100.052*
H20B−0.31910.12530.29240.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.01609 (16)0.0475 (2)0.0365 (2)0.00432 (16)0.00031 (12)−0.00270 (17)
S10.0197 (5)0.0337 (6)0.0199 (5)0.0066 (4)−0.0015 (4)−0.0037 (4)
S20.0194 (5)0.0523 (7)0.0277 (6)0.0080 (5)−0.0005 (4)−0.0018 (5)
O10.083 (3)0.046 (2)0.0318 (19)−0.010 (2)−0.0063 (18)−0.0079 (16)
O20.092 (3)0.066 (3)0.159 (5)−0.026 (3)0.093 (4)−0.053 (3)
O30.091 (4)0.072 (3)0.146 (5)−0.035 (3)0.089 (3)−0.039 (3)
N10.0396 (18)0.0507 (19)0.0266 (15)0.0039 (16)−0.0033 (13)−0.0020 (14)
C10.040 (3)0.031 (2)0.028 (2)0.009 (2)0.0021 (19)0.0002 (19)
C20.047 (3)0.040 (3)0.024 (2)0.008 (2)−0.004 (2)0.0021 (19)
C30.040 (3)0.050 (3)0.024 (2)0.006 (2)−0.0027 (19)0.002 (2)
C40.051 (3)0.039 (3)0.022 (2)0.004 (2)−0.010 (2)−0.0053 (19)
C50.037 (3)0.035 (2)0.023 (2)0.008 (2)−0.0049 (18)−0.0047 (18)
C60.0213 (19)0.035 (2)0.0139 (18)0.0029 (18)−0.0040 (15)−0.0016 (17)
C70.0176 (19)0.032 (2)0.026 (2)0.0067 (18)0.0010 (16)−0.0058 (18)
C80.020 (2)0.035 (2)0.0176 (19)0.0045 (18)0.0006 (15)−0.0057 (17)
C90.028 (2)0.054 (3)0.020 (2)0.005 (2)−0.0042 (17)0.002 (2)
C100.025 (2)0.056 (3)0.022 (2)0.002 (2)0.0025 (17)0.003 (2)
C110.018 (2)0.053 (3)0.023 (2)0.006 (2)−0.0013 (16)−0.013 (2)
C120.028 (2)0.041 (3)0.034 (2)0.014 (2)−0.0082 (19)−0.003 (2)
C130.028 (2)0.036 (2)0.027 (2)0.007 (2)0.0044 (18)0.0048 (19)
C140.020 (2)0.059 (3)0.039 (3)0.008 (2)0.0005 (19)−0.019 (2)
C150.027 (2)0.040 (3)0.028 (2)0.001 (2)0.0035 (18)0.0017 (19)
C160.036 (3)0.066 (4)0.036 (3)0.017 (3)0.001 (2)−0.012 (2)
C170.041 (3)0.090 (4)0.050 (3)0.008 (3)0.021 (3)−0.016 (3)
C180.061 (4)0.063 (3)0.028 (3)−0.007 (3)0.011 (2)−0.011 (2)
C190.0396 (18)0.0507 (19)0.0266 (15)0.0039 (16)−0.0033 (13)−0.0020 (14)
C200.031 (3)0.064 (3)0.035 (3)0.008 (2)−0.004 (2)−0.008 (2)

Geometric parameters (Å, °)

Ag1—O2i2.415 (4)C7—H7B0.9900
Ag1—S2ii2.4699 (11)C8—C91.371 (6)
Ag1—S12.5108 (11)C8—C131.389 (5)
Ag1—O12.516 (3)C9—C101.387 (6)
S1—C71.816 (4)C9—H90.9500
S1—C61.829 (3)C10—C111.397 (6)
S2—C141.822 (5)C10—H100.9500
S2—C151.831 (4)C11—C121.372 (6)
S2—Ag1iii2.4699 (11)C11—C141.503 (5)
O1—N11.241 (5)C12—C131.390 (6)
O2—N11.205 (5)C12—H120.9500
O2—Ag1iv2.415 (4)C13—H130.9500
O3—N11.207 (5)C14—H14A0.9900
C1—C61.527 (6)C14—H14B0.9900
C1—C21.532 (6)C15—C161.515 (6)
C1—H1A0.9900C15—C201.524 (6)
C1—H1B0.9900C15—H151.0000
C2—C31.513 (6)C16—C171.532 (7)
C2—H2A0.9900C16—H16A0.9900
C2—H2B0.9900C16—H16B0.9900
C3—C41.519 (6)C17—C181.525 (7)
C3—H3A0.9900C17—H17A0.9900
C3—H3B0.9900C17—H17B0.9900
C4—C51.529 (5)C18—C191.515 (7)
C4—H4A0.9900C18—H18A0.9900
C4—H4B0.9900C18—H18B0.9900
C5—C61.531 (6)C19—C201.512 (6)
C5—H5A0.9900C19—H19A0.9900
C5—H5B0.9900C19—H19B0.9900
C6—H61.0000C20—H20A0.9900
C7—C81.510 (5)C20—H20B0.9900
C7—H7A0.9900
O2i—Ag1—S2ii121.08 (12)C9—C8—C7121.7 (4)
O2i—Ag1—S193.69 (12)C13—C8—C7120.2 (4)
S2ii—Ag1—S1144.39 (4)C8—C9—C10121.8 (4)
O2i—Ag1—O191.78 (15)C8—C9—H9119.1
S2ii—Ag1—O1101.83 (10)C10—C9—H9119.1
S1—Ag1—O183.01 (9)C9—C10—C11120.0 (4)
C7—S1—C6103.42 (18)C9—C10—H10120.0
C7—S1—Ag197.63 (13)C11—C10—H10120.0
C6—S1—Ag1110.32 (14)C12—C11—C10118.3 (4)
C14—S2—C15102.2 (2)C12—C11—C14121.0 (4)
C14—S2—Ag1iii99.21 (14)C10—C11—C14120.7 (4)
C15—S2—Ag1iii107.56 (14)C11—C12—C13121.3 (4)
N1—O1—Ag1117.3 (3)C11—C12—H12119.4
N1—O2—Ag1iv113.5 (3)C13—C12—H12119.4
O2—N1—O3116.7 (4)C8—C13—C12120.6 (4)
O2—N1—O1119.6 (5)C8—C13—H13119.7
O3—N1—O1123.6 (5)C12—C13—H13119.7
C6—C1—C2109.7 (3)C11—C14—S2113.2 (3)
C6—C1—H1A109.7C11—C14—H14A108.9
C2—C1—H1A109.7S2—C14—H14A108.9
C6—C1—H1B109.7C11—C14—H14B108.9
C2—C1—H1B109.7S2—C14—H14B108.9
H1A—C1—H1B108.2H14A—C14—H14B107.8
C3—C2—C1111.8 (3)C16—C15—C20110.8 (4)
C3—C2—H2A109.3C16—C15—S2109.9 (3)
C1—C2—H2A109.3C20—C15—S2110.2 (3)
C3—C2—H2B109.3C16—C15—H15108.6
C1—C2—H2B109.3C20—C15—H15108.6
H2A—C2—H2B107.9S2—C15—H15108.6
C2—C3—C4111.1 (4)C15—C16—C17111.4 (4)
C2—C3—H3A109.4C15—C16—H16A109.3
C4—C3—H3A109.4C17—C16—H16A109.3
C2—C3—H3B109.4C15—C16—H16B109.3
C4—C3—H3B109.4C17—C16—H16B109.3
H3A—C3—H3B108.0H16A—C16—H16B108.0
C3—C4—C5110.6 (4)C18—C17—C16110.1 (4)
C3—C4—H4A109.5C18—C17—H17A109.6
C5—C4—H4A109.5C16—C17—H17A109.6
C3—C4—H4B109.5C18—C17—H17B109.6
C5—C4—H4B109.5C16—C17—H17B109.6
H4A—C4—H4B108.1H17A—C17—H17B108.1
C4—C5—C6111.3 (3)C19—C18—C17110.7 (4)
C4—C5—H5A109.4C19—C18—H18A109.5
C6—C5—H5A109.4C17—C18—H18A109.5
C4—C5—H5B109.4C19—C18—H18B109.5
C6—C5—H5B109.4C17—C18—H18B109.5
H5A—C5—H5B108.0H18A—C18—H18B108.1
C1—C6—C5110.7 (3)C20—C19—C18111.1 (4)
C1—C6—S1114.0 (3)C20—C19—H19A109.4
C5—C6—S1105.5 (2)C18—C19—H19A109.4
C1—C6—H6108.9C20—C19—H19B109.4
C5—C6—H6108.9C18—C19—H19B109.4
S1—C6—H6108.9H19A—C19—H19B108.0
C8—C7—S1114.2 (3)C19—C20—C15110.8 (4)
C8—C7—H7A108.7C19—C20—H20A109.5
S1—C7—H7A108.7C15—C20—H20A109.5
C8—C7—H7B108.7C19—C20—H20B109.5
S1—C7—H7B108.7C15—C20—H20B109.5
H7A—C7—H7B107.6H20A—C20—H20B108.1
C9—C8—C13118.0 (4)
O2i—Ag1—S1—C7−26.26 (19)S1—C7—C8—C13−122.8 (4)
S2ii—Ag1—S1—C7165.66 (14)C13—C8—C9—C10−0.1 (6)
O1—Ag1—S1—C765.08 (15)C7—C8—C9—C10176.8 (4)
O2i—Ag1—S1—C681.2 (2)C8—C9—C10—C11−0.2 (7)
S2ii—Ag1—S1—C6−86.92 (15)C9—C10—C11—C120.0 (6)
O1—Ag1—S1—C6172.50 (16)C9—C10—C11—C14179.9 (4)
O2i—Ag1—O1—N1−38.0 (4)C10—C11—C12—C130.4 (6)
S2ii—Ag1—O1—N184.3 (3)C14—C11—C12—C13−179.5 (4)
S1—Ag1—O1—N1−131.5 (3)C9—C8—C13—C120.5 (6)
Ag1iv—O2—N1—O313.2 (7)C7—C8—C13—C12−176.4 (4)
Ag1iv—O2—N1—O1−169.9 (3)C11—C12—C13—C8−0.7 (7)
Ag1—O1—N1—O2142.9 (5)C12—C11—C14—S2110.0 (4)
Ag1—O1—N1—O3−40.4 (6)C10—C11—C14—S2−69.9 (5)
C6—C1—C2—C3−56.9 (5)C15—S2—C14—C11−60.3 (4)
C1—C2—C3—C456.7 (5)Ag1iii—S2—C14—C11−170.6 (3)
C2—C3—C4—C5−55.6 (5)C14—S2—C15—C1697.4 (4)
C3—C4—C5—C655.9 (5)Ag1iii—S2—C15—C16−158.7 (3)
C2—C1—C6—C556.5 (4)C14—S2—C15—C20−140.2 (3)
C2—C1—C6—S1175.2 (3)Ag1iii—S2—C15—C20−36.3 (4)
C4—C5—C6—C1−56.9 (5)C20—C15—C16—C1755.8 (6)
C4—C5—C6—S1179.4 (3)S2—C15—C16—C17177.9 (4)
C7—S1—C6—C159.5 (3)C15—C16—C17—C18−56.0 (6)
Ag1—S1—C6—C1−44.0 (3)C16—C17—C18—C1956.5 (6)
C7—S1—C6—C5−178.9 (3)C17—C18—C19—C20−57.6 (6)
Ag1—S1—C6—C577.6 (3)C18—C19—C20—C1557.1 (6)
C6—S1—C7—C863.2 (3)C16—C15—C20—C19−56.1 (6)
Ag1—S1—C7—C8176.3 (3)S2—C15—C20—C19−178.0 (3)
S1—C7—C8—C960.3 (5)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) x−1, y, z; (iv) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14A···O3v0.992.603.416 (7)140
C14—H14B···O3iii0.992.473.199 (6)130
C7—H7B···O2i0.992.433.118 (6)126

Symmetry codes: (v) x−1, −y+1/2, z−1/2; (iii) x−1, y, z; (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2093).

References

  • Bruker. (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cho, J., Yap, G. P. A. & Riordan, C. G. (2007). Inorg. Chem.46, 11308–11315. [PubMed]
  • Kim, T. H., Park, G., Shin, Y. W., Park, K.-M., Choi, M. Y. & Kim, J. (2008). Bull. Korean Chem. Soc.29, 499–502.
  • Kim, T. H., Seo, J., Park, K.-M., Lee, S. S. & Kim, J. (2007). Inorg. Chem. Commun.10, 313-317.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev.252, 1346–1386.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography