PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m472.
Published online 2009 March 31. doi:  10.1107/S1600536809011064
PMCID: PMC2969014

Aqua­(dicyanamido)­{μ-6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­i­dyne)]diphenolato}copper(II)sodium(I)

Abstract

The mol­ecule of the title compound, [CuNa(C18H18N2O4)(C2N3)(H2O)], is almost planar, the maximum deviation from the mol­ecular plane being 0.48 (4) Å. The coordination environment of the Cu2+ ion is distorted square-planar and it is N 2 O 2-chelated by the Schiff base ligand. The Na+ cation has a distorted octahedral environment defined by the four O atoms of the 6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand, a water ligand and a dicyanamide anion.

Related literature

For chemical background, see: Ohba & Okawa (2000 [triangle]). For related structures, see: Correia et al. (2005 [triangle]); Costes et al.(2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m472-scheme1.jpg

Experimental

Crystal data

  • [CuNa(C18H18N2O4)(C2N3)(H2O)]
  • M r = 496.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m472-efi1.jpg
  • a = 7.5974 (14) Å
  • b = 22.999 (4) Å
  • c = 12.876 (3) Å
  • β = 101.986 (4)°
  • V = 2200.7 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.05 mm−1
  • T = 293 K
  • 0.23 × 0.21 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.794, T max = 0.825
  • 11729 measured reflections
  • 4314 independent reflections
  • 2996 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.142
  • S = 1.03
  • 4314 reflections
  • 291 parameters
  • 54 restraints
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011064/hg2492sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011064/hg2492Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation (Y4080395).

supplementary crystallographic information

Comment

The dicyanamide ligand N(CN)2, has attracted attention in the past four years for the buildup of interesting extended architectures. Its versatile coordination behavior and its ability to organize solids into polymeric structures with a rich diversity of magnetic properties have attracted interest toward this research area (Ohba et al., 2000). N,N-disalicylideneethylenediamine type Schiff bases ligands present versatile steric, electronic and lipophilic properties (Correia et al. 2005). We report here the synthesis and crystal structure of the title compound.

The molecular structure is shown in Fig.1. The values of the geometric parameters in (I) are normal (Costes et al. 2004) (Table 1). The copper and sodium cations are connected via two bridging oxygen atoms of the ligand. The Na atom is coordinated by the four O atoms of the 6,6'-Dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol ligand, a water ligand and a dicyanamide anion while the four-coordinate Cu gives a planar coordination.

Experimental

A mixture of 6,6'-Dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol) and copper chloride (1 mmol) in methanol (15 ml) was stirred for 30 min and sodium dicyanamide (1 mmol) was added, stirred for another 15 min and then filtered. The resulting clear blue solution was vapor at room temperature for 7 days, after which large blue block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C–H distances in the range of 0.93–0.97Å and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[CuNa(C18H18N2O4)(C2N3)(H2O)]F(000) = 1020
Mr = 496.94Dx = 1.500 Mg m3Dm = 1.500 Mg m3Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3562 reflections
a = 7.5974 (14) Åθ = 2.8–25.0°
b = 22.999 (4) ŵ = 1.05 mm1
c = 12.876 (3) ÅT = 293 K
β = 101.986 (4)°Block, blue
V = 2200.7 (7) Å30.23 × 0.21 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer4314 independent reflections
Radiation source: fine-focus sealed tube2996 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −9→8
Tmin = 0.794, Tmax = 0.825k = −27→28
11729 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0747P)2 + 0.4736P] where P = (Fo2 + 2Fc2)/3
4314 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.41 e Å3
54 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.24890 (6)0.506744 (19)0.06032 (4)0.04808 (19)
Na10.36641 (19)0.38275 (6)0.20334 (11)0.0492 (4)
O10.2721 (4)0.48218 (10)0.1952 (2)0.0513 (6)
O20.3153 (4)0.42658 (12)0.3689 (2)0.0705 (8)
O30.3315 (3)0.43211 (10)0.03987 (18)0.0472 (6)
O40.4284 (4)0.32308 (11)0.0497 (2)0.0619 (7)
O50.1622 (4)0.30926 (12)0.2164 (2)0.0690 (8)
H5B0.12860.28760.16680.083*
H5A0.10300.30440.26140.083*
N10.1661 (4)0.58079 (13)0.0845 (3)0.0549 (8)
N20.2233 (4)0.52876 (15)−0.0761 (3)0.0556 (8)
N30.9191 (5)0.2881 (2)0.3649 (3)0.0874 (10)
N40.6425 (6)0.3426 (2)0.2955 (3)0.0896 (11)
N51.0355 (6)0.26675 (19)0.5447 (3)0.0868 (12)
C10.1804 (5)0.57156 (17)0.2676 (4)0.0603 (11)
C20.2396 (5)0.51238 (16)0.2741 (3)0.0492 (9)
C30.2601 (6)0.48344 (18)0.3710 (3)0.0592 (10)
C40.2247 (7)0.5129 (2)0.4559 (4)0.0818 (15)
H40.23710.49380.52070.098*
C50.1700 (8)0.5713 (3)0.4488 (5)0.0953 (17)
H50.14930.59030.50890.114*
C60.1479 (7)0.5995 (2)0.3589 (4)0.0807 (14)
H60.11050.63810.35530.097*
C70.1477 (6)0.60141 (17)0.1718 (4)0.0656 (12)
H70.10900.63980.17240.079*
C80.3386 (8)0.3935 (2)0.4617 (3)0.0885 (16)
H8A0.42100.41290.51750.133*
H8B0.38610.35600.44940.133*
H8C0.22480.38870.48200.133*
C90.3045 (5)0.4367 (2)−0.1448 (3)0.0630 (11)
C100.3413 (5)0.40704 (17)−0.0485 (3)0.0482 (9)
C110.3903 (5)0.34713 (18)−0.0474 (3)0.0575 (10)
C120.4003 (7)0.3185 (2)−0.1381 (4)0.0846 (15)
H120.43100.2794−0.13640.101*
C130.3647 (9)0.3482 (4)−0.2317 (5)0.112 (2)
H130.37150.3289−0.29430.134*
C140.3192 (8)0.4058 (3)−0.2353 (4)0.0973 (18)
H140.29740.4249−0.30040.117*
C150.2507 (5)0.4971 (2)−0.1515 (3)0.0637 (12)
H150.23470.5145−0.21810.076*
C160.4985 (7)0.26442 (18)0.0605 (4)0.0851 (15)
H16A0.40740.23790.02600.128*
H16B0.53310.25470.13450.128*
H16C0.60140.26180.02830.128*
C170.1101 (7)0.6168 (2)−0.0103 (4)0.0847 (15)
H17A−0.02010.6196−0.02810.102*
H17B0.15900.65570.00290.102*
C180.1742 (8)0.5909 (2)−0.0959 (4)0.0906 (16)
H18A0.27890.6122−0.10720.109*
H18B0.08190.5939−0.16020.109*
C190.7693 (7)0.3174 (2)0.3323 (3)0.0738 (10)
C200.9740 (6)0.2781 (2)0.4624 (4)0.0659 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0467 (3)0.0467 (3)0.0492 (3)−0.0028 (2)0.0064 (2)0.0091 (2)
Na10.0568 (9)0.0453 (8)0.0444 (8)0.0046 (7)0.0079 (6)0.0042 (6)
O10.0734 (18)0.0380 (13)0.0434 (14)0.0046 (12)0.0140 (12)0.0000 (11)
O20.115 (3)0.0577 (17)0.0409 (15)0.0092 (17)0.0201 (15)0.0046 (13)
O30.0575 (15)0.0475 (14)0.0362 (13)0.0008 (12)0.0090 (11)0.0018 (11)
O40.0793 (19)0.0461 (15)0.0653 (19)0.0003 (13)0.0264 (15)−0.0075 (13)
O50.088 (2)0.0678 (18)0.0566 (17)−0.0200 (16)0.0264 (15)−0.0101 (14)
N10.0471 (18)0.0396 (17)0.074 (2)−0.0016 (14)0.0039 (16)0.0128 (16)
N20.0464 (18)0.063 (2)0.053 (2)−0.0063 (15)0.0016 (15)0.0218 (17)
N30.076 (2)0.125 (2)0.0618 (19)0.0281 (19)0.0156 (17)0.0111 (19)
N40.077 (2)0.121 (3)0.065 (2)0.025 (2)0.0029 (17)0.0089 (19)
N50.097 (3)0.087 (3)0.071 (2)0.019 (2)0.003 (2)0.015 (2)
C10.056 (2)0.050 (2)0.072 (3)0.0021 (19)0.008 (2)−0.019 (2)
C20.051 (2)0.047 (2)0.050 (2)−0.0018 (17)0.0113 (17)−0.0081 (17)
C30.065 (3)0.065 (3)0.049 (2)−0.002 (2)0.0145 (19)−0.011 (2)
C40.095 (4)0.104 (4)0.047 (3)0.000 (3)0.015 (2)−0.017 (2)
C50.113 (4)0.098 (4)0.076 (4)0.009 (4)0.024 (3)−0.043 (3)
C60.083 (3)0.068 (3)0.089 (4)0.016 (3)0.015 (3)−0.031 (3)
C70.061 (3)0.037 (2)0.093 (4)0.0035 (19)0.003 (2)−0.006 (2)
C80.126 (4)0.097 (4)0.046 (3)0.000 (3)0.026 (3)0.019 (2)
C90.044 (2)0.102 (4)0.043 (2)−0.003 (2)0.0081 (17)−0.002 (2)
C100.040 (2)0.068 (2)0.037 (2)−0.0084 (18)0.0090 (15)−0.0053 (18)
C110.055 (2)0.066 (3)0.056 (3)−0.010 (2)0.0186 (19)−0.019 (2)
C120.089 (4)0.091 (4)0.075 (3)−0.002 (3)0.022 (3)−0.031 (3)
C130.119 (5)0.160 (6)0.059 (4)0.019 (5)0.024 (3)−0.037 (4)
C140.099 (4)0.158 (6)0.036 (3)0.007 (4)0.017 (2)−0.008 (3)
C150.048 (2)0.101 (4)0.040 (2)−0.006 (2)0.0053 (18)0.019 (2)
C160.110 (4)0.044 (2)0.109 (4)−0.001 (2)0.041 (3)−0.011 (2)
C170.079 (3)0.074 (3)0.099 (4)0.016 (3)0.014 (3)0.046 (3)
C180.109 (4)0.079 (3)0.079 (4)0.001 (3)0.009 (3)0.036 (3)
C190.069 (2)0.103 (3)0.0486 (19)0.016 (2)0.0115 (18)0.0103 (19)
C200.062 (2)0.082 (2)0.0536 (19)0.0124 (18)0.0107 (17)0.0120 (19)

Geometric parameters (Å, °)

Cu1—O11.799 (2)C3—C41.360 (6)
Cu1—N21.800 (3)C4—C51.404 (7)
Cu1—N11.864 (3)C4—H40.9300
Cu1—O31.865 (2)C5—C61.306 (7)
Na1—O52.324 (3)C5—H50.9300
Na1—O32.357 (3)C6—H60.9300
Na1—N42.373 (4)C7—H70.9300
Na1—O12.392 (3)C8—H8A0.9600
Na1—O22.461 (3)C8—H8B0.9600
Na1—O42.531 (3)C8—H8C0.9600
O1—C21.297 (4)C9—C141.389 (7)
O2—C31.375 (5)C9—C101.392 (5)
O2—C81.397 (5)C9—C151.446 (6)
O3—C101.292 (4)C10—C111.427 (6)
O4—C111.343 (5)C11—C121.356 (6)
O4—C161.446 (5)C12—C131.363 (8)
O5—H5B0.8078C12—H120.9300
O5—H5A0.8118C13—C141.368 (9)
N1—C71.254 (6)C13—H130.9300
N1—C171.463 (5)C14—H140.9300
N2—C151.264 (5)C15—H150.9300
N2—C181.485 (6)C16—H16A0.9600
N3—C201.260 (5)C16—H16B0.9600
N3—C191.314 (6)C16—H16C0.9600
N4—C191.139 (5)C17—C181.426 (7)
N5—C201.097 (5)C17—H17A0.9700
C1—C71.389 (6)C17—H17B0.9700
C1—C61.406 (6)C18—H18A0.9700
C1—C21.430 (5)C18—H18B0.9700
C2—C31.393 (6)
O1—Cu1—N2177.98 (13)C6—C5—C4121.0 (5)
O1—Cu1—N195.42 (13)C6—C5—H5119.5
N2—Cu1—N186.24 (16)C4—C5—H5119.5
O1—Cu1—O383.04 (10)C5—C6—C1120.1 (5)
N2—Cu1—O395.30 (14)C5—C6—H6120.0
N1—Cu1—O3178.45 (13)C1—C6—H6120.0
O5—Na1—O3117.51 (11)N1—C7—C1125.2 (4)
O5—Na1—N4102.41 (15)N1—C7—H7117.4
O3—Na1—N4123.91 (13)C1—C7—H7117.4
O5—Na1—O1120.00 (11)O2—C8—H8A109.5
O3—Na1—O161.53 (9)O2—C8—H8B109.5
N4—Na1—O1128.31 (15)H8A—C8—H8B109.5
O5—Na1—O290.42 (11)O2—C8—H8C109.5
O3—Na1—O2124.57 (10)H8A—C8—H8C109.5
N4—Na1—O290.49 (13)H8B—C8—H8C109.5
O1—Na1—O263.05 (9)C14—C9—C10117.4 (5)
O5—Na1—O484.12 (10)C14—C9—C15120.8 (5)
O3—Na1—O464.40 (9)C10—C9—C15121.8 (4)
N4—Na1—O483.75 (13)O3—C10—C9121.9 (4)
O1—Na1—O4125.91 (10)O3—C10—C11119.0 (3)
O2—Na1—O4171.02 (11)C9—C10—C11119.1 (4)
C2—O1—Cu1126.3 (2)O4—C11—C12124.2 (4)
C2—O1—Na1125.6 (2)O4—C11—C10114.4 (3)
Cu1—O1—Na1108.12 (11)C12—C11—C10121.4 (4)
C3—O2—C8119.1 (3)C11—C12—C13118.9 (5)
C3—O2—Na1120.7 (2)C11—C12—H12120.6
C8—O2—Na1120.2 (3)C13—C12—H12120.6
C10—O3—Cu1128.2 (2)C12—C13—C14121.2 (5)
C10—O3—Na1123.7 (2)C12—C13—H13119.4
Cu1—O3—Na1107.21 (11)C14—C13—H13119.4
C11—O4—C16118.6 (3)C13—C14—C9122.1 (5)
C11—O4—Na1117.7 (2)C13—C14—H14119.0
C16—O4—Na1123.7 (3)C9—C14—H14119.0
Na1—O5—H5B119.8N2—C15—C9126.6 (4)
Na1—O5—H5A128.9N2—C15—H15116.7
H5B—O5—H5A110.5C9—C15—H15116.7
C7—N1—C17117.8 (4)O4—C16—H16A109.5
C7—N1—Cu1126.8 (3)O4—C16—H16B109.5
C17—N1—Cu1115.3 (3)H16A—C16—H16B109.5
C15—N2—C18119.8 (4)O4—C16—H16C109.5
C15—N2—Cu1125.9 (3)H16A—C16—H16C109.5
C18—N2—Cu1114.2 (3)H16B—C16—H16C109.5
C20—N3—C19119.8 (4)C18—C17—N1108.8 (4)
C19—N4—Na1171.6 (5)C18—C17—H17A109.9
C7—C1—C6119.1 (4)N1—C17—H17A109.9
C7—C1—C2121.2 (4)C18—C17—H17B109.9
C6—C1—C2119.6 (4)N1—C17—H17B109.9
O1—C2—C3116.2 (3)H17A—C17—H17B108.3
O1—C2—C1124.9 (4)C17—C18—N2112.5 (4)
C3—C2—C1118.8 (4)C17—C18—H18A109.1
C4—C3—O2126.9 (4)N2—C18—H18A109.1
C4—C3—C2118.5 (4)C17—C18—H18B109.1
O2—C3—C2114.5 (3)N2—C18—H18B109.1
C3—C4—C5121.9 (5)H18A—C18—H18B107.8
C3—C4—H4119.0N4—C19—N3174.1 (5)
C5—C4—H4119.0N5—C20—N3173.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5B···N5i0.812.022.826 (5)178
O5—H5A···N3ii0.812.152.961 (5)173

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2492).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Correia, I., Duarte, M. T., Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M., Geraldes, C. A., Carlos, F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732–744.
  • Costes, J.-P., Novitchi, G., Shova, S., Dahan, F., Donnadieu, B. & Tuchagues, J.-P. (2004). Inorg. Chem.43, 7792–7799. [PubMed]
  • Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev.198, 313–328.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography