PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m366–m367.
Published online 2009 March 6. doi:  10.1107/S1600536809006898
PMCID: PMC2969010

(μ-3,4-Diacetyl­hexa-2,4-diene-2,5-diol­ato-κ4 O 2,O 3:O 4,O 5)bis­[aqua(1,10-phen­an­thro­line-κ2 N,N′)copper(II)] bis­(tetra­fluorid­oborate) monohydrate

Abstract

In the title compound, [Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2O, the two Cu atoms are each chelated by the acetyl­acetonate unit of the 3,4-diacetyl­hexa-2,4-diene-2,5-diolate (tae) ligand. The Cu atoms are square-pyramidally penta­coordinated, with one bidentate 1,10-phenanthroline (phen) and the tae ligand basal and one water mol­ecule apical. The pyridyl rings of the phen ligands participate in π–π [centroid–centroid distance = 3.894 (3) Å] and C—H (...) π inter­actions, generating layers which are inter­connected through O—H(...)O and O—H(...)F hydrogen bonds between the water mol­ecules and the tetra­fluorido­borate anions. The F atoms of both tetra­fluorido­borate anions are each disordered over two positions of equal occupancy.

Related literature

For related Cu(II)–tae2−–diimine complexes, see: Shen et al. (1999a [triangle],b [triangle]); Lim et al. (1994 [triangle]); Fukuda et al. (1994 [triangle]); Zhang et al. (1999 [triangle]). For other similar metal complexes, see: Zhang et al. (1998 [triangle], 1999 [triangle]); Mei et al. (2006a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m366-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2O
  • M r = 911.35
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m366-efi1.jpg
  • a = 11.5555 (9) Å
  • b = 12.0954 (9) Å
  • c = 15.4446 (12) Å
  • α = 67.654 (1)°
  • β = 78.890 (1)°
  • γ = 72.784 (1)°
  • V = 1899.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.21 mm−1
  • T = 298 K
  • 0.16 × 0.08 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.858, T max = 0.949
  • 15806 measured reflections
  • 6928 independent reflections
  • 3558 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.114
  • S = 0.84
  • 6928 reflections
  • 606 parameters
  • 326 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]), publCIF (Westrip, 2009 [triangle]) and enCIFer (Allen et al., 2004 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006898/ng2549sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006898/ng2549Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JAT thanks CONACYT for a postdoctoral position. We thank CSCI, Spain, for a licence to use the Cambridge Structural Database.

supplementary crystallographic information

Comment

The asymmetric structure of 1 consists of one dinuclear [(phen)(H2O)Cu(tae)Cu(H2O)(phen)]2+ complex cation, two disordered BF4- anions and a water molecule, where phen represents the 1,10-phenanthroline, and tae the 3,4-diacetylhexa-2,4-diene-2,5-diolate, see Figure 1. In the cation one Cu atom coordinates to each acac- moiety of the tae2-. The Cu atoms are pentacoordinated with one bidentate phen and one water molecule in addition to the tae2- ligand. The geometry around both Cu atoms is square pyramidal as indicated by the values of the τ parameter, 0.07 for both Cu1 and Cu2. The two acac moieties of the tae ligand deviate from the ideal geometry as indicated by the torsion angles C4—C3—C8—C7 and C2—C3—C8—C9, 99.9 (6) and 101.1 (6)°, respectively (ideal values 90°). The deviation of the ideal geometry is also reflected in the angle the central rings of the phen ligands C(14)—C(15)—C(22)—C(19)—C(20)—C(21) and C(26)—C(27)—C(34)—C(31)—C(32)—C(33) which has a value of 73.6 (3)°, ideal value 90°. The water molecule coordinated to Cu1 forms a hydrogen bond with the free water molecule, O(5) ···O(7) 2.835 (6) Å. In addition the three water molecules present interactions with the disordered BF4- anions. Two of the py rings of each phen ligands coordinated to the Cu1 present π-π interactions between them: N(1)—C(12)—C(11)—C(13)—C(21)—C(20) and N(2)—C(18)—C(17)—C(16)—C(22)—C(19)[2 - x,-y,2 - z], have centroid···centroid distance, Cg···Cg, of 3.894 (3) Å. H-bonded dimers are formed through C—H ··· π interactions between one py ring of the phen coordinated to Cu2 and a phen coordinated to Cu1, C(29)—H(29)···N(1)—C(12)—C(11)—C(13)—C(21)—C(20) [2 - x,1 - y,1 - z] with a C···Cg = 3.522 (7) Å, Figure 2.

Experimental

Copper(II) tetrafluoroborate hydrate (H2O-31.2%) (0.188 g, 0.69 mmol) was added to a freshly made mixture of 1,10-phenanthroline (0.124 g, 0.69 mmol) and tetraacetylethane (0.068 g, 0.34 mmol) in methanol (15 ml) to give a dark green-blue suspension. The reaction mixture was stirred for 3 hrs at 45°C in a water bath, firstly and then at room temperature overnight. The blue-green solid was recovered by filtration and it was air-dried. 12 mg of the product were suspended in acetone (1 ml) and water (ca 1 ml) was added in order to achieve complete dissolution. Crystals suitable for X-ray analysis were obtained after 2 weeks of slow evaporation.

Refinement

Both BF4- anions are disordered and were refined in two major contributors with s.o.f. 0.5. The H atoms on O atoms were located in the Fourier map and refined with U(iso)= 1.5Ueq(H2O). H on C atoms were fixed geometrically and treated as riding with 0.96Å (methyl) and 0.93Å (aromatic) with Uiso(H)= 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.
The molecular structure of the cation in (1), showing the atom- labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
View of the molecular packing in (1).

Crystal data

[Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2OZ = 2
Mr = 911.35F(000) = 924
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.5555 (9) ÅCell parameters from 3675 reflections
b = 12.0954 (9) Åθ = 2.2–24.9°
c = 15.4446 (12) ŵ = 1.21 mm1
α = 67.654 (1)°T = 298 K
β = 78.890 (1)°Prism, green
γ = 72.784 (1)°0.16 × 0.08 × 0.04 mm
V = 1899.2 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer6928 independent reflections
Radiation source: fine-focus sealed tube3558 reflections with I > 2σ(I)
graphiteRint = 0.059
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 1.9°
ω scansh = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −14→14
Tmin = 0.858, Tmax = 0.949l = −18→18
15806 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.84w = 1/[σ2(Fo2) + (0.0366P)2] where P = (Fo2 + 2Fc2)/3
6928 reflections(Δ/σ)max = 0.001
606 parametersΔρmax = 0.54 e Å3
326 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.99590 (6)0.18154 (5)0.85485 (4)0.0390 (2)
Cu20.65472 (6)0.87240 (6)0.61594 (5)0.0491 (2)
O10.8415 (3)0.2366 (3)0.8079 (2)0.0404 (9)
O20.9820 (3)0.3323 (3)0.8705 (2)0.0468 (10)
O30.7359 (3)0.7405 (3)0.5728 (2)0.0445 (10)
O40.6140 (3)0.7653 (3)0.7374 (2)0.0515 (10)
O51.1038 (4)0.2306 (4)0.7078 (3)0.0604 (11)
H5D1.115 (6)0.301 (3)0.693 (4)0.091*
H5E1.049 (4)0.241 (6)0.674 (4)0.091*
O60.8423 (5)0.8930 (4)0.6395 (4)0.0763 (13)
H6D0.835 (7)0.968 (2)0.632 (5)0.114*
H6E0.904 (4)0.849 (6)0.618 (5)0.114*
O70.1659 (5)0.4582 (5)0.6594 (4)0.0931 (15)
H7A0.194 (7)0.456 (8)0.707 (4)0.140*
H7B0.184 (7)0.521 (5)0.618 (4)0.140*
N11.0160 (4)0.0087 (3)0.8585 (3)0.0374 (11)
N21.1408 (4)0.0983 (4)0.9301 (3)0.0368 (11)
N30.5590 (4)1.0233 (4)0.6458 (3)0.0490 (12)
N40.6619 (4)0.9957 (4)0.4867 (3)0.0485 (12)
C10.6712 (5)0.3667 (5)0.7313 (4)0.0523 (16)
H1A0.66280.28780.73640.078*
H1B0.67680.41770.66620.078*
H1C0.60160.40550.76400.078*
C20.7842 (4)0.3498 (5)0.7739 (3)0.0348 (13)
C30.8174 (5)0.4515 (4)0.7750 (3)0.0348 (13)
C40.9136 (5)0.4354 (5)0.8251 (4)0.0396 (14)
C50.9433 (5)0.5441 (5)0.8342 (4)0.0616 (18)
H5A1.01110.51510.87120.092*
H5B0.87400.58700.86440.092*
H5C0.96350.59900.77290.092*
C60.8686 (5)0.5545 (5)0.5733 (4)0.0555 (17)
H6A0.87670.60320.50780.083*
H6B0.83970.48450.58060.083*
H6C0.94630.52680.59810.083*
C70.7798 (5)0.6312 (5)0.6254 (4)0.0406 (14)
C80.7509 (4)0.5814 (4)0.7219 (4)0.0356 (13)
C90.6633 (5)0.6503 (5)0.7713 (4)0.0425 (14)
C100.6193 (5)0.5913 (5)0.8720 (3)0.0569 (17)
H10A0.55940.65200.89330.085*
H10B0.68660.55780.91000.085*
H10C0.58380.52640.87720.085*
C110.9811 (6)−0.1545 (5)0.8256 (4)0.0592 (17)
H110.9341−0.18070.79840.071*
C120.9525 (5)−0.0316 (5)0.8195 (4)0.0507 (16)
H120.88680.02360.78710.061*
C131.0777 (6)−0.2358 (5)0.8714 (4)0.0574 (17)
H131.0963−0.31800.87630.069*
C141.2556 (6)−0.2718 (5)0.9568 (4)0.0529 (16)
H141.2809−0.35430.96160.064*
C151.3201 (5)−0.2274 (5)0.9931 (4)0.0503 (16)
H151.3892−0.27941.02260.060*
C161.3461 (5)−0.0469 (5)1.0248 (4)0.0529 (16)
H161.4143−0.09431.05720.063*
C171.3051 (5)0.0741 (6)1.0134 (4)0.0594 (17)
H171.34570.11061.03730.071*
C181.2015 (5)0.1449 (5)0.9657 (4)0.0490 (15)
H181.17470.22800.95890.059*
C191.1824 (5)−0.0245 (4)0.9411 (3)0.0346 (13)
C201.1134 (5)−0.0718 (4)0.9031 (3)0.0348 (13)
C211.1489 (5)−0.1963 (5)0.9111 (4)0.0427 (14)
C221.2846 (5)−0.1003 (5)0.9872 (4)0.0425 (14)
C230.5072 (6)1.0331 (6)0.7278 (5)0.0693 (19)
H230.51290.96210.78090.083*
C240.4450 (6)1.1451 (6)0.7371 (5)0.082 (2)
H240.40861.14880.79550.098*
C250.4372 (6)1.2499 (6)0.6606 (6)0.077 (2)
H250.39571.32560.66660.093*
C260.4903 (6)1.3473 (6)0.4869 (6)0.076 (2)
H260.44891.42580.48730.092*
C270.5463 (6)1.3346 (6)0.4065 (5)0.072 (2)
H270.54651.40430.35290.087*
C280.6657 (6)1.1947 (6)0.3192 (5)0.076 (2)
H280.66741.26050.26310.091*
C290.7220 (6)1.0756 (6)0.3223 (5)0.080 (2)
H290.76201.06050.26810.096*
C300.7183 (5)0.9776 (6)0.4079 (4)0.0602 (17)
H300.75640.89760.40950.072*
C310.6061 (5)1.1119 (5)0.4834 (4)0.0475 (15)
C320.5494 (5)1.1274 (5)0.5703 (4)0.0458 (15)
C330.4910 (5)1.2440 (6)0.5738 (5)0.0595 (18)
C340.6068 (6)1.2147 (5)0.4007 (5)0.0570 (17)
B10.8838 (5)0.2213 (5)0.5346 (4)0.101 (2)
F10.8098 (11)0.3342 (7)0.5272 (7)0.138 (4)0.50
F20.8189 (11)0.1382 (9)0.5615 (8)0.145 (5)0.50
F30.9664 (10)0.1914 (12)0.5938 (8)0.165 (5)0.50
F40.9393 (10)0.2322 (10)0.4465 (5)0.152 (4)0.50
F1A0.8141 (11)0.3279 (8)0.4850 (7)0.145 (5)0.50
F2A0.8125 (10)0.1552 (9)0.6042 (6)0.109 (3)0.50
F3A0.9625 (9)0.2425 (12)0.5766 (8)0.135 (4)0.50
F4A0.9420 (11)0.1540 (10)0.4814 (7)0.180 (5)0.50
B20.3294 (4)0.4202 (4)0.8750 (3)0.0641 (16)
F50.2337 (8)0.4460 (12)0.9365 (7)0.091 (4)0.50
F60.4163 (9)0.3279 (7)0.9241 (7)0.100 (3)0.50
F70.2957 (9)0.3809 (7)0.8148 (5)0.098 (3)0.50
F80.3687 (11)0.5225 (8)0.8272 (6)0.123 (4)0.50
F5A0.2328 (8)0.4162 (13)0.9389 (8)0.098 (4)0.50
F6A0.2915 (10)0.4675 (10)0.7880 (5)0.149 (4)0.50
F7A0.3964 (9)0.4925 (8)0.8799 (7)0.103 (3)0.50
F8A0.4019 (9)0.3057 (6)0.8903 (8)0.102 (3)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0431 (4)0.0245 (4)0.0444 (4)−0.0034 (3)−0.0095 (3)−0.0074 (3)
Cu20.0615 (5)0.0320 (4)0.0425 (4)−0.0019 (4)−0.0037 (4)−0.0083 (3)
O10.043 (2)0.0210 (19)0.052 (2)−0.0037 (17)−0.0079 (19)−0.0084 (18)
O20.051 (2)0.031 (2)0.057 (2)−0.0017 (18)−0.019 (2)−0.0131 (19)
O30.066 (3)0.025 (2)0.033 (2)−0.0038 (19)−0.0013 (19)−0.0074 (17)
O40.066 (3)0.026 (2)0.040 (2)0.0045 (19)0.009 (2)−0.0058 (18)
O50.064 (3)0.057 (3)0.056 (3)−0.019 (3)−0.003 (2)−0.012 (3)
O60.083 (4)0.069 (3)0.081 (3)−0.018 (3)−0.017 (3)−0.026 (3)
O70.110 (4)0.082 (4)0.092 (4)−0.029 (3)−0.034 (4)−0.019 (3)
N10.045 (3)0.025 (2)0.037 (3)−0.005 (2)−0.008 (2)−0.005 (2)
N20.039 (3)0.030 (3)0.038 (3)−0.008 (2)−0.004 (2)−0.009 (2)
N30.054 (3)0.039 (3)0.046 (3)0.000 (2)0.002 (3)−0.018 (3)
N40.053 (3)0.037 (3)0.044 (3)−0.005 (2)−0.003 (3)−0.006 (2)
C10.047 (4)0.038 (3)0.070 (4)−0.004 (3)−0.020 (3)−0.014 (3)
C20.031 (3)0.037 (3)0.034 (3)−0.007 (3)−0.003 (3)−0.010 (3)
C30.041 (3)0.025 (3)0.034 (3)−0.005 (3)−0.007 (3)−0.006 (2)
C40.048 (4)0.025 (3)0.044 (3)−0.004 (3)−0.004 (3)−0.013 (3)
C50.064 (4)0.039 (3)0.088 (5)0.000 (3)−0.029 (4)−0.028 (3)
C60.071 (4)0.040 (3)0.045 (4)−0.009 (3)0.006 (3)−0.012 (3)
C70.040 (3)0.031 (3)0.048 (4)−0.008 (3)−0.002 (3)−0.012 (3)
C80.037 (3)0.025 (3)0.037 (3)−0.002 (2)−0.003 (3)−0.006 (3)
C90.047 (4)0.034 (3)0.039 (3)−0.006 (3)−0.010 (3)−0.006 (3)
C100.061 (4)0.040 (3)0.043 (4)0.002 (3)0.004 (3)−0.001 (3)
C110.085 (5)0.039 (4)0.061 (4)−0.019 (4)−0.021 (4)−0.017 (3)
C120.063 (4)0.036 (3)0.050 (4)−0.009 (3)−0.021 (3)−0.007 (3)
C130.084 (5)0.027 (3)0.055 (4)−0.008 (3)−0.011 (4)−0.010 (3)
C140.067 (5)0.028 (3)0.048 (4)0.008 (3)−0.005 (3)−0.011 (3)
C150.044 (4)0.039 (4)0.046 (4)0.008 (3)−0.006 (3)−0.005 (3)
C160.043 (4)0.049 (4)0.052 (4)−0.003 (3)−0.016 (3)−0.002 (3)
C170.060 (4)0.060 (4)0.063 (4)−0.023 (4)−0.022 (4)−0.013 (4)
C180.051 (4)0.040 (3)0.054 (4)−0.013 (3)−0.009 (3)−0.011 (3)
C190.039 (3)0.027 (3)0.030 (3)−0.005 (3)−0.002 (3)−0.004 (3)
C200.044 (4)0.023 (3)0.029 (3)−0.003 (3)−0.004 (3)−0.003 (2)
C210.058 (4)0.029 (3)0.038 (3)−0.007 (3)−0.004 (3)−0.012 (3)
C220.037 (3)0.038 (3)0.040 (3)−0.007 (3)−0.004 (3)−0.002 (3)
C230.085 (5)0.060 (4)0.054 (4)−0.002 (4)−0.001 (4)−0.024 (4)
C240.089 (6)0.072 (5)0.083 (6)0.012 (4)−0.002 (5)−0.053 (5)
C250.071 (5)0.049 (4)0.110 (6)0.008 (4)−0.013 (5)−0.040 (5)
C260.071 (5)0.033 (4)0.118 (7)0.002 (4)−0.027 (5)−0.020 (5)
C270.069 (5)0.045 (4)0.081 (5)−0.004 (4)−0.022 (4)0.002 (4)
C280.085 (5)0.057 (5)0.053 (5)−0.012 (4)−0.007 (4)0.012 (4)
C290.099 (6)0.069 (5)0.047 (4)−0.016 (5)0.002 (4)−0.001 (4)
C300.069 (5)0.053 (4)0.049 (4)−0.013 (3)−0.003 (4)−0.009 (4)
C310.038 (4)0.032 (3)0.063 (4)−0.003 (3)−0.011 (3)−0.008 (3)
C320.046 (4)0.031 (3)0.055 (4)−0.006 (3)−0.009 (3)−0.010 (3)
C330.050 (4)0.044 (4)0.082 (5)0.007 (3)−0.018 (4)−0.026 (4)
C340.060 (4)0.041 (4)0.057 (4)−0.007 (3)−0.017 (4)−0.002 (4)
B10.135 (6)0.089 (4)0.110 (5)−0.047 (4)−0.019 (4)−0.051 (4)
F10.226 (9)0.086 (5)0.115 (9)−0.035 (5)−0.001 (7)−0.059 (6)
F20.162 (8)0.095 (6)0.222 (11)−0.062 (6)−0.044 (8)−0.068 (7)
F30.184 (8)0.193 (11)0.126 (7)−0.122 (7)−0.059 (6)0.014 (8)
F40.147 (8)0.162 (10)0.122 (6)0.018 (7)−0.011 (5)−0.064 (7)
F1A0.203 (9)0.121 (6)0.101 (9)−0.027 (6)−0.052 (7)−0.018 (5)
F2A0.136 (7)0.086 (6)0.138 (7)−0.059 (5)−0.006 (5)−0.054 (5)
F3A0.173 (8)0.131 (9)0.125 (8)−0.098 (6)−0.050 (6)−0.008 (6)
F4A0.206 (10)0.175 (10)0.196 (10)−0.052 (8)0.043 (8)−0.130 (8)
B20.077 (4)0.059 (4)0.067 (4)−0.019 (3)−0.012 (3)−0.029 (3)
F50.087 (6)0.099 (8)0.100 (6)−0.014 (5)0.005 (4)−0.062 (5)
F60.084 (5)0.096 (6)0.116 (8)0.004 (5)−0.046 (5)−0.035 (5)
F70.139 (7)0.092 (6)0.084 (6)−0.009 (5)−0.039 (5)−0.052 (5)
F80.173 (8)0.087 (5)0.102 (8)−0.066 (5)0.002 (6)−0.008 (5)
F5A0.083 (6)0.094 (7)0.135 (6)−0.034 (5)0.024 (5)−0.065 (6)
F6A0.185 (8)0.168 (9)0.091 (5)−0.042 (8)−0.071 (5)−0.014 (6)
F7A0.122 (7)0.117 (7)0.116 (8)−0.074 (6)0.019 (6)−0.071 (6)
F8A0.105 (7)0.063 (4)0.131 (8)−0.008 (4)0.007 (5)−0.043 (5)

Geometric parameters (Å, °)

Cu1—O21.886 (3)C13—C211.389 (7)
Cu1—O11.892 (3)C13—H130.9300
Cu1—N22.008 (4)C14—C151.336 (7)
Cu1—N12.013 (4)C14—C211.425 (7)
Cu1—O52.320 (4)C14—H140.9300
Cu2—O31.884 (3)C15—C221.440 (7)
Cu2—O41.895 (3)C15—H150.9300
Cu2—N41.990 (4)C16—C171.350 (7)
Cu2—N32.004 (4)C16—C221.407 (7)
Cu2—O62.363 (5)C16—H160.9300
O1—C21.281 (5)C17—C181.401 (7)
O2—C41.280 (5)C17—H170.9300
O3—C71.269 (5)C18—H180.9300
O4—C91.274 (5)C19—C221.389 (6)
O5—H5D0.842 (11)C19—C201.419 (7)
O5—H5E0.846 (11)C20—C211.402 (6)
O6—H6D0.852 (11)C23—C241.380 (7)
O6—H6E0.852 (11)C23—H230.9300
O7—H7A0.850 (11)C24—C251.359 (8)
O7—H7B0.845 (11)C24—H240.9300
N1—C121.320 (6)C25—C331.384 (8)
N1—C201.353 (6)C25—H250.9300
N2—C181.316 (6)C26—C271.327 (8)
N2—C191.372 (6)C26—C331.445 (8)
N3—C231.325 (7)C26—H260.9300
N3—C321.345 (6)C27—C341.441 (8)
N4—C301.329 (6)C27—H270.9300
N4—C311.348 (6)C28—C341.381 (8)
C1—C21.501 (6)C28—C291.380 (8)
C1—H1A0.9600C28—H280.9300
C1—H1B0.9600C29—C301.405 (7)
C1—H1C0.9600C29—H290.9300
C2—C31.399 (6)C30—H300.9300
C3—C41.401 (7)C31—C341.404 (7)
C3—C81.510 (6)C31—C321.429 (7)
C4—C51.513 (6)C32—C331.388 (7)
C5—H5A0.9600B1—F31.326 (6)
C5—H5B0.9600B1—F21.325 (6)
C5—H5C0.9600B1—F4A1.328 (6)
C6—C71.499 (6)B1—F1A1.330 (6)
C6—H6A0.9600B1—F3A1.343 (6)
C6—H6B0.9600B1—F11.356 (6)
C6—H6C0.9600B1—F41.363 (6)
C7—C81.392 (7)B1—F2A1.367 (6)
C8—C91.411 (6)B2—F81.338 (5)
C9—C101.501 (7)B2—F5A1.340 (5)
C10—H10A0.9600B2—F8A1.347 (6)
C10—H10B0.9600B2—F61.347 (5)
C10—H10C0.9600B2—F6A1.349 (5)
C11—C131.356 (7)B2—F71.351 (5)
C11—C121.394 (7)B2—F51.357 (6)
C11—H110.9300B2—F7A1.358 (5)
C12—H120.9300
O2—Cu1—O192.75 (14)C11—C13—C21120.1 (5)
O2—Cu1—N291.77 (16)C11—C13—H13119.9
O1—Cu1—N2166.92 (15)C21—C13—H13119.9
O2—Cu1—N1171.40 (16)C15—C14—C21121.8 (5)
O1—Cu1—N192.39 (16)C15—C14—H14119.1
N2—Cu1—N181.76 (17)C21—C14—H14119.1
O2—Cu1—O595.44 (15)C14—C15—C22121.1 (5)
O1—Cu1—O595.00 (14)C14—C15—H15119.5
N2—Cu1—O596.78 (16)C22—C15—H15119.5
N1—Cu1—O590.97 (16)C17—C16—C22119.2 (5)
O3—Cu2—O492.78 (14)C17—C16—H16120.4
O3—Cu2—N492.05 (17)C22—C16—H16120.4
O4—Cu2—N4168.61 (17)C16—C17—C18120.3 (5)
O3—Cu2—N3172.57 (17)C16—C17—H17119.9
O4—Cu2—N392.64 (17)C18—C17—H17119.9
N4—Cu2—N381.72 (19)N2—C18—C17122.4 (5)
O3—Cu2—O690.72 (16)N2—C18—H18118.8
O4—Cu2—O699.97 (17)C17—C18—H18118.8
N4—Cu2—O690.27 (18)N2—C19—C22123.3 (5)
N3—Cu2—O693.34 (17)N2—C19—C20115.9 (4)
C2—O1—Cu1124.8 (3)C22—C19—C20120.9 (5)
C4—O2—Cu1124.3 (3)N1—C20—C21123.1 (5)
C7—O3—Cu2124.7 (3)N1—C20—C19117.0 (4)
C9—O4—Cu2125.4 (3)C21—C20—C19119.9 (5)
Cu1—O5—H5D108 (5)C13—C21—C20116.7 (5)
Cu1—O5—H5E100 (4)C13—C21—C14125.0 (5)
H5D—O5—H5E105 (6)C20—C21—C14118.3 (5)
Cu2—O6—H6D109 (5)C19—C22—C16117.3 (5)
Cu2—O6—H6E114 (5)C19—C22—C15118.1 (5)
H6D—O6—H6E124 (7)C16—C22—C15124.7 (5)
H7A—O7—H7B102 (8)N3—C23—C24122.2 (6)
C12—N1—C20118.4 (4)N3—C23—H23118.9
C12—N1—Cu1128.9 (4)C24—C23—H23118.9
C20—N1—Cu1112.6 (3)C25—C24—C23119.7 (6)
C18—N2—C19117.6 (5)C25—C24—H24120.2
C18—N2—Cu1129.7 (4)C23—C24—H24120.2
C19—N2—Cu1112.6 (3)C24—C25—C33120.0 (6)
C23—N3—C32117.7 (5)C24—C25—H25120.0
C23—N3—Cu2129.2 (4)C33—C25—H25120.0
C32—N3—Cu2113.1 (4)C27—C26—C33122.6 (6)
C30—N4—C31118.5 (5)C27—C26—H26118.7
C30—N4—Cu2128.5 (4)C33—C26—H26118.7
C31—N4—Cu2113.0 (4)C26—C27—C34121.1 (6)
C2—C1—H1A109.5C26—C27—H27119.4
C2—C1—H1B109.5C34—C27—H27119.4
H1A—C1—H1B109.5C34—C28—C29119.2 (6)
C2—C1—H1C109.5C34—C28—H28120.4
H1A—C1—H1C109.5C29—C28—H28120.4
H1B—C1—H1C109.5C28—C29—C30119.4 (6)
O1—C2—C3126.3 (5)C28—C29—H29120.3
O1—C2—C1113.0 (4)C30—C29—H29120.3
C3—C2—C1120.7 (4)N4—C30—C29122.0 (6)
C2—C3—C4120.8 (4)N4—C30—H30119.0
C2—C3—C8121.0 (5)C29—C30—H30119.0
C4—C3—C8118.2 (4)N4—C31—C34122.8 (6)
O2—C4—C3126.2 (5)N4—C31—C32116.6 (5)
O2—C4—C5112.3 (5)C34—C31—C32120.6 (5)
C3—C4—C5121.4 (5)N3—C32—C33123.8 (6)
C4—C5—H5A109.5N3—C32—C31115.6 (5)
C4—C5—H5B109.5C33—C32—C31120.6 (6)
H5A—C5—H5B109.5C25—C33—C32116.6 (6)
C4—C5—H5C109.5C25—C33—C26126.0 (6)
H5A—C5—H5C109.5C32—C33—C26117.4 (6)
H5B—C5—H5C109.5C28—C34—C31118.2 (6)
C7—C6—H6A109.5C28—C34—C27124.2 (6)
C7—C6—H6B109.5C31—C34—C27117.7 (6)
H6A—C6—H6B109.5F1—B1—F4105.4 (5)
C7—C6—H6C109.5F2—B1—F1110.2 (5)
H6A—C6—H6C109.5F2—B1—F4109.7 (6)
H6B—C6—H6C109.5F3—B1—F4109.9 (6)
O3—C7—C8125.9 (5)F3—B1—F1110.2 (6)
O3—C7—C6113.3 (5)F3—B1—F2111.4 (6)
C8—C7—C6120.8 (5)F4A—B1—F1A111.5 (5)
C7—C8—C9121.6 (5)F4A—B1—F3A111.0 (6)
C7—C8—C3119.1 (5)F1A—B1—F3A109.8 (6)
C9—C8—C3119.3 (5)F4A—B1—F2A107.9 (6)
O4—C9—C8125.1 (5)F1A—B1—F2A109.2 (6)
O4—C9—C10113.5 (5)F3A—B1—F2A107.2 (5)
C8—C9—C10121.4 (5)F6—B2—F7107.9 (5)
C9—C10—H10A109.5F6—B2—F5108.2 (5)
C9—C10—H10B109.5F7—B2—F5110.3 (7)
H10A—C10—H10B109.5F8—B2—F7109.9 (5)
C9—C10—H10C109.5F8—B2—F6112.0 (6)
H10A—C10—H10C109.5F8—B2—F5108.6 (6)
H10B—C10—H10C109.5F5A—B2—F8A109.6 (5)
C13—C11—C12119.8 (5)F5A—B2—F6A109.5 (6)
C13—C11—H11120.1F8A—B2—F6A110.4 (6)
C12—C11—H11120.1F5A—B2—F7A111.7 (7)
N1—C12—C11121.9 (5)F8A—B2—F7A107.8 (5)
N1—C12—H12119.1F6A—B2—F7A107.8 (5)
C11—C12—H12119.1
O2—Cu1—O1—C219.5 (4)C13—C11—C12—N1−1.0 (9)
N2—Cu1—O1—C2129.6 (7)C12—C11—C13—C21−0.8 (9)
N1—Cu1—O1—C2−167.4 (4)C21—C14—C15—C22−0.1 (9)
O5—Cu1—O1—C2−76.2 (4)C22—C16—C17—C180.8 (9)
O1—Cu1—O2—C4−23.7 (4)C19—N2—C18—C170.0 (8)
N2—Cu1—O2—C4168.6 (4)Cu1—N2—C18—C17−177.0 (4)
O5—Cu1—O2—C471.6 (4)C16—C17—C18—N2−0.3 (9)
O4—Cu2—O3—C7−22.8 (4)C18—N2—C19—C22−0.2 (7)
N4—Cu2—O3—C7167.5 (4)Cu1—N2—C19—C22177.3 (4)
O6—Cu2—O3—C777.2 (4)C18—N2—C19—C20179.0 (4)
O3—Cu2—O4—C916.7 (5)Cu1—N2—C19—C20−3.5 (5)
N4—Cu2—O4—C9131.7 (8)C12—N1—C20—C21−1.0 (7)
N3—Cu2—O4—C9−168.4 (5)Cu1—N1—C20—C21−177.3 (4)
O6—Cu2—O4—C9−74.5 (5)C12—N1—C20—C19177.7 (5)
O1—Cu1—N1—C1213.4 (5)Cu1—N1—C20—C191.4 (6)
N2—Cu1—N1—C12−178.3 (5)N2—C19—C20—N11.4 (7)
O5—Cu1—N1—C12−81.6 (5)C22—C19—C20—N1−179.3 (4)
O1—Cu1—N1—C20−170.8 (3)N2—C19—C20—C21−179.9 (4)
N2—Cu1—N1—C20−2.5 (3)C22—C19—C20—C21−0.6 (7)
O5—Cu1—N1—C2094.2 (3)C11—C13—C21—C201.7 (8)
O2—Cu1—N2—C18−5.3 (5)C11—C13—C21—C14−176.9 (5)
O1—Cu1—N2—C18−115.5 (7)N1—C20—C21—C13−0.8 (8)
N1—Cu1—N2—C18−179.6 (5)C19—C20—C21—C13−179.4 (5)
O5—Cu1—N2—C1890.4 (5)N1—C20—C21—C14177.9 (5)
O2—Cu1—N2—C19177.5 (3)C19—C20—C21—C14−0.7 (7)
O1—Cu1—N2—C1967.3 (8)C15—C14—C21—C13179.7 (5)
N1—Cu1—N2—C193.2 (3)C15—C14—C21—C201.1 (8)
O5—Cu1—N2—C19−86.8 (3)N2—C19—C22—C160.8 (8)
O4—Cu2—N3—C239.3 (5)C20—C19—C22—C16−178.5 (5)
N4—Cu2—N3—C23179.3 (6)N2—C19—C22—C15−179.2 (4)
O6—Cu2—N3—C23−90.9 (5)C20—C19—C22—C151.6 (7)
O4—Cu2—N3—C32−171.6 (4)C17—C16—C22—C19−1.0 (8)
N4—Cu2—N3—C32−1.5 (4)C17—C16—C22—C15178.9 (5)
O6—Cu2—N3—C3288.3 (4)C14—C15—C22—C19−1.2 (8)
O3—Cu2—N4—C30−5.9 (5)C14—C15—C22—C16178.8 (5)
O4—Cu2—N4—C30−121.0 (9)C32—N3—C23—C240.0 (9)
N3—Cu2—N4—C30178.1 (5)Cu2—N3—C23—C24179.1 (5)
O6—Cu2—N4—C3084.8 (5)N3—C23—C24—C25−0.9 (11)
O3—Cu2—N4—C31177.7 (4)C23—C24—C25—C330.3 (11)
O4—Cu2—N4—C3162.6 (10)C33—C26—C27—C343.0 (11)
N3—Cu2—N4—C311.7 (4)C34—C28—C29—C30−0.1 (11)
O6—Cu2—N4—C31−91.6 (4)C31—N4—C30—C290.5 (9)
Cu1—O1—C2—C3−7.8 (7)Cu2—N4—C30—C29−175.7 (5)
Cu1—O1—C2—C1172.9 (3)C28—C29—C30—N40.0 (10)
O1—C2—C3—C4−7.5 (8)C30—N4—C31—C34−1.0 (8)
C1—C2—C3—C4171.7 (5)Cu2—N4—C31—C34175.7 (4)
O1—C2—C3—C8172.2 (5)C30—N4—C31—C32−178.5 (5)
C1—C2—C3—C8−8.6 (7)Cu2—N4—C31—C32−1.7 (6)
Cu1—O2—C4—C316.7 (7)C23—N3—C32—C331.5 (9)
Cu1—O2—C4—C5−166.0 (3)Cu2—N3—C32—C33−177.7 (5)
C2—C3—C4—O22.6 (8)C23—N3—C32—C31−179.7 (5)
C8—C3—C4—O2−177.1 (5)Cu2—N3—C32—C311.1 (6)
C2—C3—C4—C5−174.4 (5)N4—C31—C32—N30.4 (8)
C8—C3—C4—C55.9 (7)C34—C31—C32—N3−177.1 (5)
Cu2—O3—C7—C817.2 (8)N4—C31—C32—C33179.2 (5)
Cu2—O3—C7—C6−163.6 (3)C34—C31—C32—C331.8 (9)
O3—C7—C8—C92.2 (9)C24—C25—C33—C321.1 (10)
C6—C7—C8—C9−176.9 (5)C24—C25—C33—C26−179.9 (6)
O3—C7—C8—C3−176.4 (5)N3—C32—C33—C25−2.1 (9)
C6—C7—C8—C34.5 (8)C31—C32—C33—C25179.1 (5)
C2—C3—C8—C7−79.9 (6)N3—C32—C33—C26178.8 (5)
C4—C3—C8—C799.8 (6)C31—C32—C33—C260.0 (9)
C2—C3—C8—C9101.5 (6)C27—C26—C33—C25178.5 (7)
C4—C3—C8—C9−78.8 (6)C27—C26—C33—C32−2.5 (10)
Cu2—O4—C9—C8−4.4 (8)C29—C28—C34—C31−0.4 (10)
Cu2—O4—C9—C10175.4 (3)C29—C28—C34—C27179.2 (6)
C7—C8—C9—O4−9.1 (9)N4—C31—C34—C281.0 (9)
C3—C8—C9—O4169.5 (5)C32—C31—C34—C28178.3 (6)
C7—C8—C9—C10171.0 (5)N4—C31—C34—C27−178.6 (5)
C3—C8—C9—C10−10.4 (8)C32—C31—C34—C27−1.3 (8)
C20—N1—C12—C111.9 (8)C26—C27—C34—C28179.3 (7)
Cu1—N1—C12—C11177.5 (4)C26—C27—C34—C31−1.1 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7B···F1Ai0.85 (1)1.91 (2)2.737 (11)166 (8)
O7—H7A···F6A0.85 (1)1.90 (3)2.728 (9)164 (8)
O7—H7A···F70.85 (1)1.99 (4)2.782 (8)155 (8)
O6—H6E···F4ii0.85 (1)2.05 (2)2.898 (9)171 (7)
O6—H6D···F2Aiii0.85 (1)2.08 (2)2.930 (10)175 (7)
O6—H6D···F2iii0.85 (1)1.90 (3)2.694 (10)155 (7)
O5—H5E···F3A0.85 (1)1.96 (2)2.776 (8)163 (6)
O5—H5D···O7iv0.84 (1)2.00 (2)2.837 (7)173 (6)
O7—H7A···F70.85 (1)1.99 (4)2.782 (8)155 (8)
O7—H7A···F6A0.85 (1)1.90 (3)2.728 (9)164 (8)
C29—H29···Cgii0.932.753.522 (7)141

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y+1, z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2549).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Barbour, J. L. (2001). Supramol. Chem.1, 189–191.
  • Bruker (1999). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fukuda, Y., Seino, A., Mafune, K., Nakagawa, H. & Linert, W. (1994). J. Coord. Chem.33, 123–136.
  • Lim, Y. Y., Chen, W., Tan, L. L., You, X. Z. & Yao, T. M. (1994). Polyhedron, 13, 2861–2866.
  • Mei, G.-Q., Huang, K.-L. & Huang, H.-P. (2006a). Acta Cryst. E62, m2743–m2744.
  • Mei, G.-Q., Huang, K.-L., Huang, H.-P. & Li, Y.-Z. (2006b). Acta Cryst. E62, m2368–m2370.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, X.-P., Zou, J.-Z., Zha, Z.-G., Duan, C.-Y. & Xu, Z. (1999a). Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 793–797.
  • Shen, X.-P., Zou, J.-Z., Zha, Z.-G., Xu, Z., Yip, B. C. & Fun, H. K. (1999b). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 641–647.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.
  • Zhang, Y., Breeze, S. R., Wang, S., Greedan, J. E., Raju, N. P. & Li, L. (1999). Can. J. Chem.77, 1424–1435.
  • Zhang, Y., Wang, S., Enright, G. D. & Breeze, S. R. (1998). J. Am. Chem. Soc.120, 9398–9399.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography