PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o719.
Published online 2009 March 11. doi:  10.1107/S1600536809008034
PMCID: PMC2969009

1,3-Bis(2-ethoxy­phen­yl)triazene

Abstract

The title compound, C16H19N3O2, exhibits a trans geometry about the N=N double bond in the triazene unit in the solid state, and individual mol­ecules are close to planar with r.m.s. deviations from planarity of 0.065 Å and 0.242 Å for the two independent molecules in the asymmetric unit. Distinct inter­molecular N—H(...)N hydrogen bonds lead to the formation of dimers with an R 2 2(8) graph-set motif. The steric demands of the eth­oxy groups in the ortho position prevent a coplanar arrangement of the two mol­ecules in the dimers and these instead consist of two inter­locked mol­ecules that are related by a non-crystallographic pseudo-twofold rotation axis. Weak C—H(...)π inter­actions between the CH groups and the aromatic phenyl rings also occur.

Related literature

For aryl triazenes, their structural properties and metal complexes, see: Meldola et al. (1888 [triangle]); Leman et al. (1993 [triangle]); Chen et al. (2002 [triangle]); Vrieze et al. (1987 [triangle]). For a similar structure with cyano instead of eth­oxy groups, see: Melardi et al. (2008 [triangle]). For the synthesis and characterization of a similar structure with meth­oxy instead of eth­oxy groups, see: Rofouei et al. (2006 [triangle]). For the synthesis and crystal structures of mercury(II) and silver(I) complexes with 1,3-bis­(2-methoxy­phen­yl)tri­azene, see: Hematyar et al. (2008 [triangle]) and Payehghadr et al. (2007 [triangle]), respectively. For the investigation of hydrogen-bond patterns and related graph sets, see: Grell et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o719-scheme1.jpg

Experimental

Crystal data

  • C16H19N3O2
  • M r = 285.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o719-efi1.jpg
  • a = 11.3971 (7) Å
  • b = 11.8696 (7) Å
  • c = 14.0627 (9) Å
  • α = 106.467 (5)°
  • β = 98.598 (5)°
  • γ = 116.512 (5)°
  • V = 1545.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 120 K
  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.973, T max = 0.982
  • 17109 measured reflections
  • 8181 independent reflections
  • 4988 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.138
  • S = 1.00
  • 8181 reflections
  • 383 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008034/zl2178sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008034/zl2178Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Aryl triazenes have been studied for over 130 years for their interesting structural, anticancer, and reactivity properties. The first extensive investigation of the coordination chemistry of a triazene derivative (1,3-diphenyltriazene) was carried out in 1887 by Meldola (Meldola et al., 1888). In the intervening years, numerous transition metal triazenide compounds have been studied (Leman et al., 1993). Triazene compounds characterized by having a diazoamino group commonly adopt a trans configuration in the ground state (Chen et al., 2002). The study of transition metal complexes containing 1,3-diaryltriazenide [RN═N—NR]- ligands has increased greatly in the past few years, because of their potential reactivity in relation to their several coordination modes (Vrieze et al., 1987). We have recently reported the synthesis and characterization of the two molecules 1,3-bis(2-methoxyphenyl)triazene (Rofouei, et al., 2006) and 1,3-bis(2-cyanophenyl)triazene (Melardi, et al., 2008).

The title compound, C16H19N3O2, is a related triazene compound and crystallizes in the space group P1 with two crystallographically independent molecules per unit cell. It exhibits a trans stereo chemistry of the N═N double bond, and the C9—N3—N2—N1 and C17—N4—N5—N6 torsion angles are -179.45 (13) and 176.67 (13)°, respectively. The N1—N2, N2—N3, N4—N5 and N5—N6 bond distances are 1.3196 (18), 1.2909 (18), 1.2896 (18) and 1.3214 (18) Å, respectively, which indicates the presence of distinct single and double bonds between the nitrogen atoms. These values are in good agreement with the reported data for N—N and N═N bond distances (Hematyar, et al., 2008; Payehghadr, et al. 2007). For example, in 1,3-bis(2-cyanophenyl)triazene, the N—N and N═N bond distances are 1.335 (5) and 1.289 (5) Å (Melardi, et al., 2008). Individual molecules are mostly planar with an rms deviation from planarity of 0.0646 Å for all non-hydrogen atoms.

The two crystallographically independent molecules in the molecular structure (Fig. 1) are connected by two distinct classic N—H···N hydrogen bonds with D···A distances of 3.018 (2) and 3.008 (2) Å (Table 1). The N—H···N hydrogen bonds lead to the formation of dimers with an R22(8) graph set geometry (Grell et al., 2002). The steric demand of the ethoxy groups in the ortho position prevents a co-planar arrangement of the two molecules in the dimers and these do instead consist of two interlocked molecules that are related by a non-crystallographic pseudo-twofold rotation axis. The dihedral angle between the best least square planes of the two molecules is 63.15 (3) °.

Also, there are interesting weak C—H···π interactions between the CH groups and the aromatic phenyl rings with H···π and C···π distances of 2.85 and 3.686 (2) Å for C4–H4A···Cg1 (2 - x, 2 - y, 1 - z) and 2.78 and 3.549 (3) Å for C32–H32B···Cg2 (1 - x, 1 - y, -z) [Cg1 and Cg2 are centroids for C17—C22 and C25—C30 rings, respectively] (Fig. 2). The unit cell packing of the title compound is presented in Fig. 3.

Experimental

The compound was prepared by the following method: A 100 ml flask was charged with 10 g of ice and 15 ml of water and then cooled to 273 K in an ice-bath. To this was added 10 mmol (1.37 g) of o–phenetidin and 13 mmol of hydrochloric acid (37%). To this solution was added a solution containing NaNO2 (6 mmol, 0.41 g) in 25 ml of water during a 15 min period. After mixing for 15 min, a solution containing 180 mmol (14.76 g) of sodium acetate in 45 ml of water was added. After mixing for 45 min the brown product was filtered off and dissolved in Et2O, and was crystallized at 263 K. Yield, (50%) 24 mmol (6.85 g). Recrystallization from Et2O afforded the product as an orange crystalline material. m. p. 374–375 K. 1H NMR(300 MHz, DMSO): 1.36 (6H, CH3), 4.10 (4H, CH2), 6.91–7.53 (8H, aromatic), 11.26 (1H, NH). IR (KBr): 3149, 2977, 1599, 1489, 1253, 1045, 742 cm-1.

Refinement

The hydrogen atoms of the NH groups were found in difference density Fourier maps, but eventually all H atoms were placed in calculated positions. All hydrogen atoms were refined in isotropic approximation using a riding model with the Uiso(H) parameters equal to 1.2 Ueq(C/N), for methyl groups equal to 1.5 Ueq(C), where U(C) and U(N) are the respective equivalent thermal parameters of the carbon and nitrogen atoms to which the corresponding H atoms are bonded. The C-H distances are in the range of 0.95–0.98 Å, N-H distances are 0.91 Å.

Figures

Fig. 1.
Molecular structure of the title compound. Only hydrogen atoms involved in the hydrogen bonds are shown. Thermal ellipsoids are drawn at the 50% probability level.
Fig. 2.
C–H···π Interactions between CH groups with aromatic phenyl rings with H···π distances of 2.85 Å for C4–H4A···Cg1 (2 - x, 2 - y, 1 - z) and ...
Fig. 3.
Unit cell packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H19N3O2Z = 4
Mr = 285.34F(000) = 608
Triclinic, P1Dx = 1.226 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3971 (7) ÅCell parameters from 887 reflections
b = 11.8696 (7) Åθ = 3–30°
c = 14.0627 (9) ŵ = 0.08 mm1
α = 106.467 (5)°T = 120 K
β = 98.598 (5)°Prism, orange
γ = 116.512 (5)°0.30 × 0.20 × 0.15 mm
V = 1545.7 (2) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer8181 independent reflections
Radiation source: fine-focus sealed tube4988 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 29.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −15→15
Tmin = 0.973, Tmax = 0.982k = −16→16
17109 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: mixed
wR(F2) = 0.138H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0517P)2 + 0.497P] where P = (Fo2 + 2Fc2)/3
8181 reflections(Δ/σ)max < 0.001
383 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.65754 (14)0.89887 (15)0.26280 (11)0.0273 (3)
H1N0.61870.85210.30170.033*
N20.57346 (14)0.91539 (14)0.20038 (10)0.0247 (3)
N30.44508 (14)0.83193 (14)0.18591 (11)0.0253 (3)
O10.81959 (12)0.82358 (12)0.34265 (9)0.0309 (3)
O20.17841 (12)0.66700 (12)0.14955 (9)0.0308 (3)
C10.80038 (16)0.98331 (17)0.28546 (12)0.0244 (4)
C20.88658 (17)0.94198 (17)0.32698 (13)0.0256 (4)
C31.02882 (17)1.01982 (18)0.34861 (14)0.0304 (4)
H3A1.08730.99180.37650.036*
C41.08542 (18)1.13829 (18)0.32955 (14)0.0323 (4)
H4A1.18271.19130.34450.039*
C51.00087 (18)1.17975 (18)0.28886 (14)0.0317 (4)
H5A1.04011.26100.27580.038*
C60.85879 (17)1.10262 (17)0.26714 (13)0.0277 (4)
H6A0.80101.13150.23960.033*
C70.90069 (18)0.77429 (18)0.38370 (14)0.0314 (4)
H7A0.97030.84440.45230.038*
H7B0.94980.75350.33530.038*
C80.8034 (2)0.6466 (2)0.39582 (15)0.0386 (5)
H8A0.85610.61070.42470.058*
H8B0.73580.57750.32730.058*
H8C0.75480.66820.44340.058*
C90.35033 (16)0.84446 (16)0.11871 (12)0.0217 (3)
C100.20907 (17)0.75634 (16)0.10018 (13)0.0244 (3)
C110.10996 (17)0.76308 (17)0.03477 (13)0.0278 (4)
H11A0.01430.70430.02260.033*
C120.15150 (18)0.85612 (18)−0.01262 (14)0.0294 (4)
H12A0.08370.8594−0.05820.035*
C130.29049 (18)0.94394 (17)0.00583 (13)0.0279 (4)
H13A0.31801.0074−0.02680.034*
C140.38903 (17)0.93889 (17)0.07190 (12)0.0245 (3)
H14A0.48451.00060.08570.029*
C150.03901 (18)0.59545 (18)0.14986 (14)0.0310 (4)
H15A−0.02450.53320.07760.037*
H15B0.01010.66130.17960.037*
C160.0351 (2)0.5146 (2)0.21591 (15)0.0396 (5)
H16A−0.05960.46270.21680.059*
H16B0.09700.57750.28760.059*
H16C0.06560.45110.18640.059*
N40.50110 (14)0.71697 (14)0.36671 (10)0.0249 (3)
N50.42582 (13)0.58882 (14)0.30543 (10)0.0230 (3)
N60.39770 (14)0.57030 (13)0.20569 (10)0.0246 (3)
H6N0.41660.64680.19330.030*
O30.65249 (12)0.97589 (11)0.49894 (9)0.0283 (3)
O40.36188 (12)0.53622 (11)0.00756 (8)0.0262 (3)
C170.52863 (16)0.74425 (16)0.47504 (12)0.0220 (3)
C180.60555 (16)0.88364 (17)0.54400 (13)0.0238 (3)
C190.62867 (17)0.91875 (18)0.65110 (13)0.0277 (4)
H19A0.67861.01250.69780.033*
C200.57898 (18)0.81711 (19)0.68985 (13)0.0305 (4)
H20A0.59500.84170.76300.037*
C210.50605 (18)0.67988 (19)0.62246 (13)0.0303 (4)
H21A0.47430.61060.64940.036*
C220.47978 (17)0.64436 (17)0.51545 (13)0.0261 (4)
H22A0.42760.55030.46920.031*
C230.70481 (18)1.11735 (17)0.56228 (13)0.0290 (4)
H23A0.78701.15280.62240.035*
H23B0.63321.12720.58950.035*
C240.74328 (19)1.19540 (18)0.49298 (14)0.0328 (4)
H24A0.77251.29130.53180.049*
H24B0.66291.15460.43090.049*
H24C0.81941.19100.47130.049*
C250.31797 (16)0.43556 (16)0.12976 (12)0.0217 (3)
C260.30226 (16)0.41821 (16)0.02469 (12)0.0222 (3)
C270.22978 (17)0.28660 (17)−0.05366 (13)0.0251 (4)
H27A0.21930.2742−0.12480.030*
C280.17266 (17)0.17315 (17)−0.02762 (13)0.0274 (4)
H28A0.12290.0834−0.08130.033*
C290.18774 (17)0.19007 (17)0.07571 (13)0.0269 (4)
H29A0.14840.11220.09290.032*
C300.26063 (16)0.32121 (17)0.15456 (13)0.0243 (3)
H30A0.27130.33280.22560.029*
C310.35336 (17)0.52266 (17)−0.09816 (12)0.0250 (4)
H31A0.25520.4705−0.14290.030*
H31B0.39900.4729−0.12640.030*
C320.42454 (19)0.66412 (18)−0.09738 (14)0.0319 (4)
H32A0.42280.6579−0.16860.048*
H32B0.52080.7156−0.05140.048*
H32C0.37650.7112−0.07160.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0217 (7)0.0325 (8)0.0272 (7)0.0116 (6)0.0069 (6)0.0158 (6)
N20.0240 (7)0.0241 (7)0.0238 (7)0.0121 (6)0.0067 (6)0.0079 (6)
N30.0201 (7)0.0265 (7)0.0267 (7)0.0104 (6)0.0061 (6)0.0106 (6)
O10.0236 (6)0.0315 (7)0.0372 (7)0.0129 (5)0.0067 (5)0.0170 (6)
O20.0227 (6)0.0320 (7)0.0383 (7)0.0114 (5)0.0107 (5)0.0189 (6)
C10.0208 (8)0.0277 (9)0.0197 (8)0.0104 (7)0.0064 (6)0.0066 (7)
C20.0225 (8)0.0259 (9)0.0239 (8)0.0106 (7)0.0073 (7)0.0073 (7)
C30.0232 (9)0.0350 (10)0.0314 (9)0.0156 (8)0.0068 (7)0.0109 (8)
C40.0202 (8)0.0325 (10)0.0338 (10)0.0071 (8)0.0093 (7)0.0098 (8)
C50.0274 (9)0.0282 (9)0.0328 (10)0.0090 (8)0.0112 (8)0.0116 (8)
C60.0255 (9)0.0286 (9)0.0277 (9)0.0128 (8)0.0085 (7)0.0112 (7)
C70.0317 (10)0.0348 (10)0.0280 (9)0.0203 (8)0.0061 (8)0.0095 (8)
C80.0453 (12)0.0378 (11)0.0335 (10)0.0230 (10)0.0090 (9)0.0147 (9)
C90.0214 (8)0.0211 (8)0.0214 (8)0.0116 (7)0.0063 (6)0.0059 (6)
C100.0241 (8)0.0226 (8)0.0260 (8)0.0116 (7)0.0100 (7)0.0086 (7)
C110.0212 (8)0.0252 (9)0.0325 (9)0.0112 (7)0.0062 (7)0.0080 (7)
C120.0273 (9)0.0314 (10)0.0327 (9)0.0193 (8)0.0057 (7)0.0118 (8)
C130.0297 (9)0.0267 (9)0.0303 (9)0.0162 (8)0.0100 (7)0.0121 (7)
C140.0219 (8)0.0234 (8)0.0270 (9)0.0112 (7)0.0087 (7)0.0087 (7)
C150.0246 (9)0.0292 (9)0.0327 (10)0.0101 (8)0.0117 (7)0.0088 (8)
C160.0380 (11)0.0346 (11)0.0339 (10)0.0085 (9)0.0141 (9)0.0132 (9)
N40.0262 (7)0.0235 (7)0.0200 (7)0.0110 (6)0.0065 (6)0.0056 (6)
N50.0222 (7)0.0240 (7)0.0226 (7)0.0124 (6)0.0073 (6)0.0080 (6)
N60.0311 (8)0.0194 (7)0.0207 (7)0.0117 (6)0.0068 (6)0.0074 (6)
O30.0328 (7)0.0205 (6)0.0257 (6)0.0112 (5)0.0091 (5)0.0055 (5)
O40.0327 (7)0.0221 (6)0.0201 (6)0.0118 (5)0.0081 (5)0.0074 (5)
C170.0213 (8)0.0255 (8)0.0215 (8)0.0145 (7)0.0068 (6)0.0081 (7)
C180.0220 (8)0.0262 (9)0.0252 (8)0.0139 (7)0.0089 (7)0.0095 (7)
C190.0259 (9)0.0292 (9)0.0231 (8)0.0140 (8)0.0062 (7)0.0049 (7)
C200.0320 (10)0.0398 (11)0.0214 (8)0.0206 (9)0.0089 (7)0.0108 (8)
C210.0332 (10)0.0340 (10)0.0288 (9)0.0190 (8)0.0120 (8)0.0155 (8)
C220.0274 (9)0.0252 (9)0.0248 (8)0.0137 (7)0.0084 (7)0.0085 (7)
C230.0275 (9)0.0235 (9)0.0289 (9)0.0131 (7)0.0046 (7)0.0034 (7)
C240.0338 (10)0.0253 (9)0.0356 (10)0.0151 (8)0.0087 (8)0.0088 (8)
C250.0196 (8)0.0198 (8)0.0234 (8)0.0105 (7)0.0057 (6)0.0055 (6)
C260.0192 (8)0.0208 (8)0.0255 (8)0.0102 (7)0.0065 (6)0.0082 (7)
C270.0240 (8)0.0261 (9)0.0217 (8)0.0128 (7)0.0055 (7)0.0059 (7)
C280.0239 (9)0.0205 (8)0.0301 (9)0.0105 (7)0.0056 (7)0.0031 (7)
C290.0221 (8)0.0215 (8)0.0351 (10)0.0097 (7)0.0101 (7)0.0106 (7)
C300.0229 (8)0.0277 (9)0.0237 (8)0.0135 (7)0.0089 (7)0.0104 (7)
C310.0245 (8)0.0277 (9)0.0203 (8)0.0124 (7)0.0077 (7)0.0078 (7)
C320.0373 (10)0.0334 (10)0.0275 (9)0.0181 (8)0.0142 (8)0.0133 (8)

Geometric parameters (Å, °)

N1—N21.3196 (18)N4—N51.2896 (18)
N1—C11.401 (2)N4—C171.418 (2)
N1—H1N0.9100N5—N61.3214 (18)
N2—N31.2909 (18)N6—C251.403 (2)
N3—C91.414 (2)N6—H6N0.9100
O1—C21.369 (2)O3—C181.3634 (19)
O1—C71.430 (2)O3—C231.4380 (19)
O2—C101.3739 (19)O4—C261.3684 (19)
O2—C151.430 (2)O4—C311.4327 (18)
C1—C61.390 (2)C17—C221.388 (2)
C1—C21.403 (2)C17—C181.410 (2)
C2—C31.389 (2)C18—C191.392 (2)
C3—C41.386 (2)C19—C201.389 (2)
C3—H3A0.9500C19—H19A0.9500
C4—C51.384 (3)C20—C211.387 (2)
C4—H4A0.9500C20—H20A0.9500
C5—C61.387 (2)C21—C221.387 (2)
C5—H5A0.9500C21—H21A0.9500
C6—H6A0.9500C22—H22A0.9500
C7—C81.503 (3)C23—C241.509 (2)
C7—H7A0.9900C23—H23A0.9900
C7—H7B0.9900C23—H23B0.9900
C8—H8A0.9800C24—H24A0.9800
C8—H8B0.9800C24—H24B0.9800
C8—H8C0.9800C24—H24C0.9800
C9—C141.396 (2)C25—C301.391 (2)
C9—C101.404 (2)C25—C261.405 (2)
C10—C111.393 (2)C26—C271.392 (2)
C11—C121.390 (2)C27—C281.393 (2)
C11—H11A0.9500C27—H27A0.9500
C12—C131.383 (2)C28—C291.382 (2)
C12—H12A0.9500C28—H28A0.9500
C13—C141.381 (2)C29—C301.391 (2)
C13—H13A0.9500C29—H29A0.9500
C14—H14A0.9500C30—H30A0.9500
C15—C161.505 (3)C31—C321.499 (2)
C15—H15A0.9900C31—H31A0.9900
C15—H15B0.9900C31—H31B0.9900
C16—H16A0.9800C32—H32A0.9800
C16—H16B0.9800C32—H32B0.9800
C16—H16C0.9800C32—H32C0.9800
N2—N1—C1117.93 (14)N5—N4—C17114.76 (13)
N2—N1—H1N115.2N4—N5—N6111.94 (13)
C1—N1—H1N124.3N5—N6—C25118.29 (13)
N3—N2—N1111.87 (13)N5—N6—H6N115.3
N2—N3—C9114.20 (13)C25—N6—H6N125.1
C2—O1—C7118.23 (13)C18—O3—C23117.69 (13)
C10—O2—C15117.52 (13)C26—O4—C31117.43 (12)
C6—C1—N1123.34 (15)C22—C17—C18119.30 (15)
C6—C1—C2119.40 (15)C22—C17—N4124.46 (15)
N1—C1—C2117.25 (15)C18—C17—N4116.16 (14)
O1—C2—C3125.06 (15)O3—C18—C19124.44 (15)
O1—C2—C1115.10 (14)O3—C18—C17116.05 (14)
C3—C2—C1119.84 (15)C19—C18—C17119.51 (15)
C4—C3—C2120.06 (16)C20—C19—C18120.20 (16)
C4—C3—H3A120.0C20—C19—H19A119.9
C2—C3—H3A120.0C18—C19—H19A119.9
C5—C4—C3120.33 (16)C21—C20—C19120.42 (16)
C5—C4—H4A119.8C21—C20—H20A119.8
C3—C4—H4A119.8C19—C20—H20A119.8
C4—C5—C6119.94 (16)C20—C21—C22119.60 (16)
C4—C5—H5A120.0C20—C21—H21A120.2
C6—C5—H5A120.0C22—C21—H21A120.2
C5—C6—C1120.43 (16)C21—C22—C17120.93 (16)
C5—C6—H6A119.8C21—C22—H22A119.5
C1—C6—H6A119.8C17—C22—H22A119.5
O1—C7—C8107.45 (15)O3—C23—C24106.93 (14)
O1—C7—H7A110.2O3—C23—H23A110.3
C8—C7—H7A110.2C24—C23—H23A110.3
O1—C7—H7B110.2O3—C23—H23B110.3
C8—C7—H7B110.2C24—C23—H23B110.3
H7A—C7—H7B108.5H23A—C23—H23B108.6
C7—C8—H8A109.5C23—C24—H24A109.5
C7—C8—H8B109.5C23—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24B109.5
C7—C8—H8C109.5C23—C24—H24C109.5
H8A—C8—H8C109.5H24A—C24—H24C109.5
H8B—C8—H8C109.5H24B—C24—H24C109.5
C14—C9—C10119.11 (14)C30—C25—N6123.08 (14)
C14—C9—N3124.14 (14)C30—C25—C26119.77 (14)
C10—C9—N3116.74 (14)N6—C25—C26117.08 (14)
O2—C10—C11124.14 (15)O4—C26—C27124.58 (14)
O2—C10—C9116.04 (14)O4—C26—C25115.80 (14)
C11—C10—C9119.82 (15)C27—C26—C25119.62 (14)
C12—C11—C10119.79 (15)C26—C27—C28119.93 (15)
C12—C11—H11A120.1C26—C27—H27A120.0
C10—C11—H11A120.1C28—C27—H27A120.0
C13—C12—C11120.73 (16)C29—C28—C27120.51 (15)
C13—C12—H12A119.6C29—C28—H28A119.7
C11—C12—H12A119.6C27—C28—H28A119.7
C14—C13—C12119.60 (16)C28—C29—C30119.94 (15)
C14—C13—H13A120.2C28—C29—H29A120.0
C12—C13—H13A120.2C30—C29—H29A120.0
C13—C14—C9120.92 (15)C29—C30—C25120.22 (15)
C13—C14—H14A119.5C29—C30—H30A119.9
C9—C14—H14A119.5C25—C30—H30A119.9
O2—C15—C16107.22 (15)O4—C31—C32107.73 (13)
O2—C15—H15A110.3O4—C31—H31A110.2
C16—C15—H15A110.3C32—C31—H31A110.2
O2—C15—H15B110.3O4—C31—H31B110.2
C16—C15—H15B110.3C32—C31—H31B110.2
H15A—C15—H15B108.5H31A—C31—H31B108.5
C15—C16—H16A109.5C31—C32—H32A109.5
C15—C16—H16B109.5C31—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C15—C16—H16C109.5C31—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C1—N1—N2—N3−179.87 (14)C17—N4—N5—N6176.67 (13)
N1—N2—N3—C9−179.45 (13)N4—N5—N6—C25179.15 (13)
N2—N1—C1—C615.8 (2)N5—N4—C17—C22−0.5 (2)
N2—N1—C1—C2−163.08 (14)N5—N4—C17—C18−177.30 (14)
C7—O1—C2—C3−0.5 (2)C23—O3—C18—C19−13.0 (2)
C7—O1—C2—C1179.30 (14)C23—O3—C18—C17166.92 (14)
C6—C1—C2—O1179.75 (14)C22—C17—C18—O3178.74 (14)
N1—C1—C2—O1−1.4 (2)N4—C17—C18—O3−4.3 (2)
C6—C1—C2—C3−0.5 (2)C22—C17—C18—C19−1.3 (2)
N1—C1—C2—C3178.44 (15)N4—C17—C18—C19175.66 (14)
O1—C2—C3—C4180.00 (15)O3—C18—C19—C20−178.65 (15)
C1—C2—C3—C40.2 (3)C17—C18—C19—C201.4 (2)
C2—C3—C4—C50.0 (3)C18—C19—C20—C210.0 (3)
C3—C4—C5—C60.1 (3)C19—C20—C21—C22−1.6 (3)
C4—C5—C6—C1−0.3 (3)C20—C21—C22—C171.7 (3)
N1—C1—C6—C5−178.32 (16)C18—C17—C22—C21−0.2 (2)
C2—C1—C6—C50.5 (2)N4—C17—C22—C21−176.97 (16)
C2—O1—C7—C8178.55 (14)C18—O3—C23—C24−177.46 (14)
N2—N3—C9—C14−0.7 (2)N5—N6—C25—C303.8 (2)
N2—N3—C9—C10−179.91 (14)N5—N6—C25—C26−173.27 (14)
C15—O2—C10—C11−12.3 (2)C31—O4—C26—C27−2.5 (2)
C15—O2—C10—C9167.79 (14)C31—O4—C26—C25177.30 (13)
C14—C9—C10—O2−179.35 (14)C30—C25—C26—O4179.94 (14)
N3—C9—C10—O2−0.1 (2)N6—C25—C26—O4−2.9 (2)
C14—C9—C10—C110.8 (2)C30—C25—C26—C27−0.2 (2)
N3—C9—C10—C11179.99 (15)N6—C25—C26—C27176.98 (14)
O2—C10—C11—C12−179.23 (16)O4—C26—C27—C28−179.79 (15)
C9—C10—C11—C120.6 (2)C25—C26—C27—C280.4 (2)
C10—C11—C12—C13−1.1 (3)C26—C27—C28—C29−0.2 (2)
C11—C12—C13—C140.1 (3)C27—C28—C29—C30−0.1 (2)
C12—C13—C14—C91.3 (3)C28—C29—C30—C250.3 (2)
C10—C9—C14—C13−1.8 (2)N6—C25—C30—C29−177.13 (15)
N3—C9—C14—C13179.08 (15)C26—C25—C30—C29−0.1 (2)
C10—O2—C15—C16−175.19 (14)C26—O4—C31—C32179.72 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···N40.912.123.018 (2)170
N6—H6N···N30.912.113.008 (2)170
C4—H4A···Cg1i0.952.853.686 (2)147
C32—H32B···Cg2ii0.982.783.549 (3)136

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2178).

References

  • Bruker (1998). SAINT Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem.67, 2271–2277. [PubMed]
  • Grell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev.8, 1–56.
  • Hematyar, M. & Rofouei, M. K. (2008). Anal. Sci.24, x117–x118.
  • Leman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem 32, 4324–4336.
  • Melardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci.24, x281–x282.
  • Meldola, R. & Streatfield, F. W. (1888). J. Chem. Soc.61, 102–118.
  • Payehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792–1798.
  • Rofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci.22, x79–x80.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry Oxford: Pergamon Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography