PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o924.
Published online 2009 March 31. doi:  10.1107/S1600536809011210
PMCID: PMC2969007

3-Methyl­butyl 2-(5-iodo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate

Abstract

In the title mol­ecule, C16H19IO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. In the crystal, pairs of mol­ecules are linked by I(...)O [3.114 (3) Å] halogen bonding into centrosymmetric dimers. The crystal structure is further stabilized by weak inter­molecular C—H(...)O nonclassical hydrogen bonds.

Related literature

For the crystal structures of similar alkyl 2-(5-iodo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see Choi et al. (2009a [triangle],b [triangle]). For a review of halogen bonding, see Politzer et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o924-scheme1.jpg

Experimental

Crystal data

  • C16H19IO4S
  • M r = 434.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o924-efi4.jpg
  • a = 10.6726 (9) Å
  • b = 15.423 (1) Å
  • c = 10.7343 (9) Å
  • β = 102.334 (2)°
  • V = 1726.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.99 mm−1
  • T = 173 K
  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.503, T max = 0.587 (expected range = 0.472–0.550)
  • 9111 measured reflections
  • 3357 independent reflections
  • 3152 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.079
  • S = 1.23
  • 3357 reflections
  • 202 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011210/cv2534sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011210/cv2534Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of our continuing studies on the synthesis and structure of alkyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, we have recently described the crystal structure of propyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2009a) and butyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2009b). Here we report the crystal structure of the title compound, (I) (Fig. 1).

In (I), the benzofuran unit is essentially planar, with the mean deviation of 0.017 (3) Å from the least-squares plane defined by the nine constituent atoms. Two molecules are linked into centrosymmetric dimer by an I···O halogen bonding (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring S═O unit, with an I···O distance of 3.114 (3) Å. The molecular packing (Fig. 2) is stabilized by two intermolecular C—H···O nonclassical hydrogen bonds - between the benzene H atom and the S═O unit, and between the methyl H atom of the methylsulfinyl substituent and the C═O unit, respectively (Fig. 2 and Table 1).

Experimental

The 77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of isoamyl 2-(5-iodo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (434 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate,1:2 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 412-413 K; Rf = 0.53 (hexane-ethyl acetate, 1;2 v/v )]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.91 (d, J = 6.6 Hz, 6H), 1.53 (q, J = 6.6 Hz, 2H), 1.61-1.72 (m, 1H), 3.07 (s, 3H), 4.03 (s, 2H), 4.18 (t, J = 6.96 Hz, 2H), 7.29 (d, J = 8.8 Hz, 1H), 7.66 (dd, J = 8.8 Hz and 1,84 Hz, 1H), 8.28 (d, J = 1.8 Hz, 1H); EI-MS 434 [M+].

Refinement

In the title molecule, C16H19IO4S, the O atom and the methyl group of the methylsulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. Two molecules are linked by I···O [3.114 (3) Å] halogen bonding into a centrosymmetric dimer. The crystal structure is further stabilized by weak intermolecular C—H···O nonclassical hydrogen bonds.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
Fig. 2.
A portion of the crystal packing of (I) showing the C—H···O hydrogen bonds (dashed lines) and I···O halogen bonding (dotted lines) [symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) -x+1, -y+1, -z+2; ...

Crystal data

C16H19IO4SF(000) = 864
Mr = 434.27Dx = 1.671 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7114 reflections
a = 10.6726 (9) Åθ = 2.4–28.3°
b = 15.423 (1) ŵ = 1.99 mm1
c = 10.7343 (9) ÅT = 173 K
β = 102.334 (2)°Block, colourless
V = 1726.1 (2) Å30.40 × 0.40 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3357 independent reflections
Radiation source: fine-focus sealed tube3152 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.4°
[var phi] and ω scansh = −13→12
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)k = −12→19
Tmin = 0.503, Tmax = 0.587l = −12→13
9111 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.079H-atom parameters constrained
S = 1.23w = 1/[σ2(Fo2) + (0.0195P)2 + 3.2932P] where P = (Fo2 + 2Fc2)/3
3357 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.71 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.98665 (2)0.636473 (16)0.87775 (2)0.03496 (10)
S0.60639 (9)0.32117 (6)0.94130 (8)0.0275 (2)
O10.4562 (2)0.47524 (17)0.6559 (2)0.0306 (6)
O20.1263 (2)0.34631 (17)0.6994 (2)0.0323 (6)
O30.2500 (3)0.43238 (19)0.8438 (3)0.0422 (7)
O40.7470 (2)0.30422 (17)0.9660 (3)0.0360 (6)
C10.5707 (3)0.4021 (2)0.8231 (3)0.0248 (7)
C20.6445 (3)0.4775 (2)0.8026 (3)0.0241 (7)
C30.7649 (3)0.5115 (2)0.8584 (3)0.0244 (7)
H30.81890.48450.92960.029*
C40.8018 (3)0.5868 (2)0.8045 (3)0.0281 (7)
C50.7231 (4)0.6290 (2)0.7033 (4)0.0311 (8)
H50.75150.68120.67130.037*
C60.6029 (4)0.5957 (2)0.6480 (3)0.0323 (8)
H60.54750.62390.57880.039*
C70.5685 (3)0.5196 (2)0.6990 (3)0.0275 (8)
C80.4610 (3)0.4037 (2)0.7323 (3)0.0290 (8)
C90.3470 (3)0.3461 (3)0.7034 (4)0.0329 (9)
H9A0.37070.28790.73980.040*
H9B0.31850.33990.60990.040*
C100.2375 (3)0.3817 (2)0.7578 (3)0.0285 (8)
C110.0149 (4)0.3741 (3)0.7474 (4)0.0439 (10)
H11A0.00560.43790.74120.053*
H11B0.02460.35710.83790.053*
C12−0.1006 (4)0.3307 (3)0.6670 (4)0.0366 (9)
H12A−0.17570.34360.70420.044*
H12B−0.08680.26720.67240.044*
C13−0.1330 (4)0.3561 (3)0.5274 (4)0.0409 (10)
H13−0.05640.34370.49050.049*
C14−0.2427 (5)0.2997 (4)0.4585 (6)0.080 (2)
H14A−0.21750.23850.46840.120*
H14B−0.26310.31470.36770.120*
H14C−0.31830.30930.49490.120*
C15−0.1639 (5)0.4518 (4)0.5093 (5)0.0607 (14)
H15A−0.24150.46490.54080.091*
H15B−0.17810.46640.41850.091*
H15C−0.09210.48610.55700.091*
C160.5774 (4)0.3837 (3)1.0723 (4)0.0367 (9)
H16A0.59520.34831.14990.055*
H16B0.48760.40251.05460.055*
H16C0.63350.43471.08440.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.03406 (15)0.03270 (15)0.03724 (15)−0.01078 (10)0.00567 (10)0.00262 (11)
S0.0287 (5)0.0217 (4)0.0313 (4)−0.0019 (3)0.0046 (4)−0.0022 (3)
O10.0250 (13)0.0389 (14)0.0249 (12)0.0014 (11)−0.0010 (10)−0.0019 (11)
O20.0220 (12)0.0414 (15)0.0322 (13)0.0005 (11)0.0032 (10)−0.0092 (11)
O30.0378 (16)0.0473 (17)0.0421 (16)−0.0048 (13)0.0102 (13)−0.0208 (14)
O40.0285 (14)0.0327 (14)0.0448 (16)0.0031 (11)0.0030 (12)0.0004 (12)
C10.0253 (17)0.0234 (17)0.0256 (17)0.0004 (14)0.0052 (14)−0.0033 (14)
C20.0240 (17)0.0256 (17)0.0232 (16)0.0027 (14)0.0062 (13)−0.0033 (13)
C30.0236 (17)0.0273 (17)0.0215 (16)0.0013 (14)0.0034 (13)0.0009 (13)
C40.0275 (18)0.0285 (18)0.0283 (18)0.0008 (15)0.0059 (14)−0.0023 (15)
C50.038 (2)0.0248 (18)0.0326 (19)0.0008 (15)0.0128 (16)0.0011 (15)
C60.040 (2)0.0325 (19)0.0228 (17)0.0080 (17)0.0028 (15)0.0014 (15)
C70.0287 (19)0.0304 (18)0.0229 (16)0.0034 (15)0.0046 (14)−0.0019 (14)
C80.0261 (18)0.0315 (19)0.0292 (18)0.0029 (15)0.0051 (14)−0.0072 (15)
C90.0237 (18)0.035 (2)0.039 (2)−0.0035 (15)0.0030 (16)−0.0122 (16)
C100.0270 (18)0.0294 (18)0.0273 (17)0.0008 (15)0.0019 (14)0.0000 (15)
C110.030 (2)0.064 (3)0.039 (2)0.008 (2)0.0081 (17)−0.009 (2)
C120.0242 (19)0.042 (2)0.045 (2)0.0004 (17)0.0108 (17)−0.0001 (18)
C130.035 (2)0.046 (2)0.040 (2)0.0111 (19)0.0043 (18)−0.0060 (19)
C140.048 (3)0.091 (5)0.089 (4)0.002 (3)−0.014 (3)−0.037 (4)
C150.059 (3)0.065 (3)0.058 (3)0.025 (3)0.014 (3)0.015 (3)
C160.049 (2)0.034 (2)0.0293 (19)0.0004 (18)0.0129 (17)−0.0031 (16)

Geometric parameters (Å, °)

I—C42.106 (4)C9—C101.515 (5)
I—O4i3.114 (3)C9—H9A0.9900
S—O41.490 (3)C9—H9B0.9900
S—C11.762 (4)C11—C121.503 (6)
S—C161.786 (4)C11—H11A0.9900
O1—C81.369 (5)C11—H11B0.9900
O1—C71.372 (4)C12—C131.516 (6)
O2—C101.335 (4)C12—H12A0.9900
O2—C111.457 (5)C12—H12B0.9900
O3—C101.195 (4)C13—C151.517 (6)
C1—C81.355 (5)C13—C141.518 (7)
C1—C21.448 (5)C13—H131.0000
C2—C71.390 (5)C14—H14A0.9800
C2—C31.398 (5)C14—H14B0.9800
C3—C41.391 (5)C14—H14C0.9800
C3—H30.9500C15—H15A0.9800
C4—C51.386 (5)C15—H15B0.9800
C5—C61.392 (5)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.379 (5)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C8—C91.484 (5)
C4—I—O4i169.4 (1)O2—C10—C9110.6 (3)
O4—S—C1107.9 (2)O2—C11—C12107.3 (3)
O4—S—C16107.0 (2)O2—C11—H11A110.3
C1—S—C1697.9 (2)C12—C11—H11A110.3
C8—O1—C7106.4 (3)O2—C11—H11B110.3
C10—O2—C11115.1 (3)C12—C11—H11B110.3
C8—C1—C2106.9 (3)H11A—C11—H11B108.5
C8—C1—S123.5 (3)C11—C12—C13116.0 (4)
C2—C1—S129.6 (3)C11—C12—H12A108.3
C7—C2—C3119.6 (3)C13—C12—H12A108.3
C7—C2—C1104.6 (3)C11—C12—H12B108.3
C3—C2—C1135.8 (3)C13—C12—H12B108.3
C4—C3—C2116.8 (3)H12A—C12—H12B107.4
C4—C3—H3121.6C12—C13—C15112.1 (4)
C2—C3—H3121.6C12—C13—C14108.8 (4)
C5—C4—C3122.7 (3)C15—C13—C14111.8 (4)
C5—C4—I119.0 (3)C12—C13—H13108.0
C3—C4—I118.3 (3)C15—C13—H13108.0
C4—C5—C6120.7 (3)C14—C13—H13108.0
C4—C5—H5119.6C13—C14—H14A109.5
C6—C5—H5119.6C13—C14—H14B109.5
C7—C6—C5116.3 (3)H14A—C14—H14B109.5
C7—C6—H6121.8C13—C14—H14C109.5
C5—C6—H6121.8H14A—C14—H14C109.5
O1—C7—C6125.3 (3)H14B—C14—H14C109.5
O1—C7—C2110.9 (3)C13—C15—H15A109.5
C6—C7—C2123.8 (3)C13—C15—H15B109.5
C1—C8—O1111.2 (3)H15A—C15—H15B109.5
C1—C8—C9133.1 (4)C13—C15—H15C109.5
O1—C8—C9115.7 (3)H15A—C15—H15C109.5
C8—C9—C10111.6 (3)H15B—C15—H15C109.5
C8—C9—H9A109.3S—C16—H16A109.5
C10—C9—H9A109.3S—C16—H16B109.5
C8—C9—H9B109.3H16A—C16—H16B109.5
C10—C9—H9B109.3S—C16—H16C109.5
H9A—C9—H9B108.0H16A—C16—H16C109.5
O3—C10—O2124.8 (4)H16B—C16—H16C109.5
O3—C10—C9124.5 (3)
O4—S—C1—C8144.4 (3)C3—C2—C7—O1178.4 (3)
C16—S—C1—C8−104.9 (3)C1—C2—C7—O1−0.3 (4)
O4—S—C1—C2−36.8 (4)C3—C2—C7—C6−1.8 (5)
C16—S—C1—C274.0 (4)C1—C2—C7—C6179.5 (3)
C8—C1—C2—C71.0 (4)C2—C1—C8—O1−1.3 (4)
S—C1—C2—C7−178.0 (3)S—C1—C8—O1177.8 (2)
C8—C1—C2—C3−177.4 (4)C2—C1—C8—C9−179.0 (4)
S—C1—C2—C33.6 (6)S—C1—C8—C90.0 (6)
C7—C2—C3—C4−0.4 (5)C7—O1—C8—C11.1 (4)
C1—C2—C3—C4177.7 (4)C7—O1—C8—C9179.3 (3)
C2—C3—C4—C52.2 (5)C1—C8—C9—C1098.3 (5)
C2—C3—C4—I−176.4 (2)O1—C8—C9—C10−79.4 (4)
O4i—I—C4—C5149.4 (5)C11—O2—C10—O30.4 (5)
O4i—I—C4—C3−31.9 (8)C11—O2—C10—C9178.1 (3)
C3—C4—C5—C6−1.9 (6)C8—C9—C10—O3−21.8 (6)
I—C4—C5—C6176.7 (3)C8—C9—C10—O2160.4 (3)
C4—C5—C6—C7−0.3 (5)C10—O2—C11—C12177.6 (3)
C8—O1—C7—C6179.7 (3)O2—C11—C12—C13−64.3 (5)
C8—O1—C7—C2−0.4 (4)C11—C12—C13—C15−61.6 (5)
C5—C6—C7—O1−178.1 (3)C11—C12—C13—C14174.2 (4)
C5—C6—C7—C22.1 (5)

Symmetry codes: (i) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O4ii0.952.413.310 (5)159
C16—H16C···O3iii0.982.443.397 (5)167

Symmetry codes: (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2534).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o151. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o266. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model.13, 305–311. [PubMed]
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography