PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m459.
Published online 2009 March 28. doi:  10.1107/S1600536809010599
PMCID: PMC2969005

Tetra­aqua­bis[(1-ammonio-1-phosphono­ethyl)phospho­nato]zinc(II) tetra­hydrate

Abstract

The title compound, [Zn(C2H8NO6P2)2(H2O)4]·4H2O, was synthesized by the reaction of ZnCl2 with 1-amino­ethane-1,1-diyldiphospho­nic acid in aqueous solution. The asymmetric unit contains one-half of the complex and two water mol­ecules of solvation. The Zn atom occupies a special position on an inversion centre. This results in a slightly distorted octa­hedral coordination environment, which consists of the O atoms from two phospho­nic acids and four water mol­ecules. The crystal structure displays N—H(...)O and O—H(...)O hydrogen bonding, which creates a three-dimensional network.

Related literature

Diphospho­nic acids are efficient drugs for the prevention of calcification and the inhibition of bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005 [triangle]). Diphospho­nic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis, see: Szabo et al. (2002 [triangle]). For related structures, see: Li et al. (2006 [triangle], 2007 [triangle]); Lin et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m459-scheme1.jpg

Experimental

Crystal data

  • [Zn(C2H8NO6P2)2(H2O)4]·4H2O
  • M r = 617.57
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m459-efi1.jpg
  • a = 5.6712 (4) Å
  • b = 9.3279 (6) Å
  • c = 10.7009 (7) Å
  • α = 96.440 (3)°
  • β = 90.788 (3)°
  • γ = 102.080 (3)°
  • V = 549.65 (6) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.50 mm−1
  • T = 173 K
  • 0.36 × 0.10 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: numerical (SADABS; Bruker, 2005 [triangle]) T min = 0.612, T max = 0.945
  • 8897 measured reflections
  • 2244 independent reflections
  • 1747 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.081
  • S = 1.00
  • 2244 reflections
  • 182 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010599/fj2201sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010599/fj2201Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Matczak-Jon et al., 2005). Diphosphonic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). The asymmetric unit of title compound contains one-half of the formula unit (Fig.1); Zn atom occupy special position at the inversion centre and creates a slightly distorted octahedral coordination environment, which consist of two phosphonic and four aqueous oxygen atoms. The coordinated diphosphonic acids residue exist as zwitterions with positive charge on NH3 group and negative on the oxygen atom of the non-coordinated phosphonic group. The crystal structure displays N—H···O and O—H···O hydrogen bonding, which creates a three-dimensional network (Table 1, Fig.2).

Experimental

10 ml of the 0.01 M ZnCl2 aqueous solution was added to the 10 ml of 0.02 M water solution of 1-aminoethane-1,1-diyldiphosphonic acid. Colorless crystals of title compound were obtained after 2 weeks of slow evaporation of the resulted solution.

Refinement

H atoms bonded to N and O were located in a difference map and were freely refined with Uiso(H) = 1.2 Ueq of the carrier atom. Other H atoms which bonded to C were positioned geometrically and refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Figures

Fig. 1.
The title compound showing 50% probability displacement ellipsoids for the non-hydrogen atoms [Symmetry code: (i) -x, 1 - y, 1 - z].
Fig. 2.
Crystal packing of title compound, projection along a axis. Dashed lines indicate hydrogen bonds.

Crystal data

[Zn(C2H8NO6P2)2(H2O)4]·4H2OZ = 1
Mr = 617.57F(000) = 320
Triclinic, P1Dx = 1.866 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6712 (4) ÅCell parameters from 2105 reflections
b = 9.3279 (6) Åθ = 2.3–25.9°
c = 10.7009 (7) ŵ = 1.50 mm1
α = 96.440 (3)°T = 173 K
β = 90.788 (3)°Block, colourless
γ = 102.080 (3)°0.36 × 0.10 × 0.04 mm
V = 549.65 (6) Å3

Data collection

Bruker APEXII CCD diffractometer2244 independent reflections
Radiation source: fine-focus sealed tube1747 reflections with I > 2σ(I)
graphiteRint = 0.058
Detector resolution: 8.26 pixels mm-1θmax = 26.4°, θmin = 2.3°
[var phi] and ω scansh = −7→7
Absorption correction: numerical (SADABS; Bruker, 2005)k = −11→10
Tmin = 0.612, Tmax = 0.945l = −13→13
8897 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0395P)2] where P = (Fo2 + 2Fc2)/3
2244 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.00000.50000.50000.01171 (16)
P10.02405 (14)0.80873 (8)0.37915 (7)0.01033 (19)
P2−0.00669 (14)0.81048 (9)0.09143 (7)0.0116 (2)
C10.1808 (5)0.8672 (3)0.2381 (3)0.0109 (6)
C20.2791 (6)1.0348 (3)0.2544 (3)0.0176 (7)
H2A0.39831.06140.32480.026*
H2B0.14611.08550.27160.026*
H2C0.35571.06440.17700.026*
N10.3905 (5)0.7921 (3)0.2240 (3)0.0133 (6)
H1A0.483 (6)0.830 (4)0.160 (3)0.020*
H1B0.349 (6)0.699 (4)0.208 (3)0.020*
H1C0.485 (6)0.807 (4)0.295 (3)0.020*
O1−0.0090 (4)0.6449 (2)0.37040 (19)0.0135 (5)
O20.2165 (4)0.8783 (2)0.4886 (2)0.0143 (5)
H2O0.206 (6)0.956 (4)0.519 (3)0.017*
O3−0.1966 (4)0.8741 (2)0.39210 (19)0.0139 (5)
O4−0.0857 (4)0.6470 (2)0.0759 (2)0.0181 (5)
O50.1793 (4)0.8548 (2)−0.0123 (2)0.0148 (5)
H5O0.182 (6)0.931 (3)−0.039 (3)0.018*
O6−0.1990 (4)0.8997 (2)0.0930 (2)0.0156 (5)
O70.1908 (4)0.3844 (3)0.3764 (2)0.0183 (5)
H710.319 (7)0.371 (4)0.408 (3)0.022*
H720.204 (7)0.413 (4)0.312 (4)0.022*
O80.3234 (4)0.6366 (3)0.5883 (2)0.0152 (5)
H810.311 (6)0.719 (4)0.571 (3)0.018*
H820.300 (6)0.633 (4)0.667 (4)0.018*
O90.2666 (4)0.6106 (3)0.8304 (2)0.0181 (5)
H910.228 (6)0.681 (4)0.882 (3)0.022*
H920.189 (6)0.532 (4)0.852 (3)0.022*
O100.3107 (4)0.4849 (3)0.1490 (2)0.0187 (5)
H1010.236 (6)0.448 (4)0.079 (4)0.022*
H1020.437 (7)0.460 (4)0.143 (3)0.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0117 (3)0.0109 (3)0.0129 (3)0.0029 (2)0.0003 (2)0.0021 (2)
P10.0105 (4)0.0103 (4)0.0105 (4)0.0031 (3)0.0003 (3)0.0009 (3)
P20.0115 (4)0.0125 (4)0.0116 (4)0.0031 (3)−0.0009 (3)0.0035 (3)
C10.0096 (15)0.0088 (15)0.0146 (16)0.0030 (12)0.0003 (12)0.0007 (12)
C20.0208 (18)0.0114 (16)0.0183 (18)−0.0021 (13)0.0001 (14)0.0017 (13)
N10.0105 (14)0.0155 (15)0.0134 (15)0.0010 (12)−0.0017 (11)0.0032 (12)
O10.0179 (12)0.0093 (11)0.0133 (12)0.0028 (9)0.0007 (9)0.0011 (8)
O20.0164 (12)0.0141 (12)0.0129 (12)0.0067 (10)−0.0032 (9)−0.0032 (9)
O30.0118 (11)0.0150 (12)0.0154 (12)0.0049 (9)−0.0013 (9)−0.0004 (9)
O40.0224 (13)0.0143 (12)0.0158 (12)0.0001 (9)−0.0047 (10)0.0013 (9)
O50.0187 (12)0.0118 (12)0.0167 (12)0.0061 (10)0.0061 (9)0.0080 (9)
O60.0113 (11)0.0206 (12)0.0178 (12)0.0060 (9)0.0024 (9)0.0092 (9)
O70.0186 (13)0.0225 (13)0.0162 (13)0.0090 (10)−0.0004 (11)0.0043 (10)
O80.0146 (12)0.0139 (12)0.0181 (13)0.0034 (10)−0.0017 (10)0.0054 (10)
O90.0201 (13)0.0148 (12)0.0199 (13)0.0042 (10)0.0041 (10)0.0025 (10)
O100.0152 (13)0.0239 (13)0.0176 (13)0.0072 (11)−0.0022 (10)−0.0004 (10)

Geometric parameters (Å, °)

Zn1—O12.050 (2)C2—H2A0.9800
Zn1—O1i2.050 (2)C2—H2B0.9800
Zn1—O7i2.071 (2)C2—H2C0.9800
Zn1—O72.071 (2)N1—H1A0.93 (4)
Zn1—O8i2.141 (2)N1—H1B0.85 (4)
Zn1—O82.141 (2)N1—H1C0.90 (4)
P1—O11.492 (2)O2—H2O0.78 (3)
P1—O31.504 (2)O5—H5O0.793 (18)
P1—O21.575 (2)O7—H710.84 (4)
P1—C11.839 (3)O7—H720.76 (4)
P2—O41.486 (2)O8—H810.82 (4)
P2—O61.503 (2)O8—H820.86 (4)
P2—O51.571 (2)O9—H910.87 (4)
P2—C11.846 (3)O9—H920.83 (4)
C1—N11.502 (4)O10—H1010.85 (4)
C1—C21.535 (4)O10—H1020.80 (4)
O1—Zn1—O1i179.999 (1)N1—C1—P1107.2 (2)
O1—Zn1—O7i90.77 (9)C2—C1—P1110.6 (2)
O1i—Zn1—O7i89.23 (9)N1—C1—P2106.55 (19)
O1—Zn1—O789.23 (9)C2—C1—P2110.3 (2)
O1i—Zn1—O790.77 (9)P1—C1—P2113.58 (16)
O7i—Zn1—O7180.00 (11)C1—C2—H2A109.5
O1—Zn1—O8i88.74 (9)C1—C2—H2B109.5
O1i—Zn1—O8i91.26 (9)H2A—C2—H2B109.5
O7i—Zn1—O8i92.46 (9)C1—C2—H2C109.5
O7—Zn1—O8i87.54 (9)H2A—C2—H2C109.5
O1—Zn1—O891.27 (9)H2B—C2—H2C109.5
O1i—Zn1—O888.73 (9)C1—N1—H1A108 (2)
O7i—Zn1—O887.54 (9)C1—N1—H1B114 (2)
O7—Zn1—O892.46 (9)H1A—N1—H1B110 (3)
O8i—Zn1—O8180.0C1—N1—H1C113 (2)
O1—P1—O3118.11 (12)H1A—N1—H1C108 (3)
O1—P1—O2107.82 (12)H1B—N1—H1C104 (3)
O3—P1—O2111.01 (12)P1—O1—Zn1133.80 (13)
O1—P1—C1107.13 (13)P1—O2—H2O115 (3)
O3—P1—C1108.84 (13)P2—O5—H5O118 (3)
O2—P1—C1102.79 (13)Zn1—O7—H71113 (2)
O4—P2—O6117.67 (13)Zn1—O7—H72114 (3)
O4—P2—O5108.21 (12)H71—O7—H72114 (4)
O6—P2—O5110.56 (12)Zn1—O8—H81101 (2)
O4—P2—C1108.34 (13)Zn1—O8—H82103 (2)
O6—P2—C1108.52 (13)H81—O8—H82108 (3)
O5—P2—C1102.44 (13)H91—O9—H92106 (3)
N1—C1—C2108.4 (3)H101—O10—H102103 (3)
O1—P1—C1—N1−47.7 (2)O6—P2—C1—C2−54.5 (2)
O3—P1—C1—N1−176.47 (18)O5—P2—C1—C262.5 (2)
O2—P1—C1—N165.8 (2)O4—P2—C1—P1−58.45 (19)
O1—P1—C1—C2−165.7 (2)O6—P2—C1—P170.38 (18)
O3—P1—C1—C265.6 (2)O5—P2—C1—P1−172.68 (15)
O2—P1—C1—C2−52.2 (2)O3—P1—O1—Zn1−92.94 (19)
O1—P1—C1—P269.67 (18)O2—P1—O1—Zn133.8 (2)
O3—P1—C1—P2−59.08 (18)C1—P1—O1—Zn1143.85 (17)
O2—P1—C1—P2−176.85 (15)O7i—Zn1—O1—P141.88 (18)
O4—P2—C1—N159.3 (2)O7—Zn1—O1—P1−138.12 (18)
O6—P2—C1—N1−171.88 (19)O8i—Zn1—O1—P1134.32 (18)
O5—P2—C1—N1−54.9 (2)O8—Zn1—O1—P1−45.68 (18)
O4—P2—C1—C2176.7 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O6ii0.93 (4)1.96 (4)2.796 (4)150 (3)
N1—H1B···O100.85 (4)1.99 (4)2.827 (4)168 (3)
N1—H1C···O3ii0.90 (4)2.01 (4)2.851 (3)153 (3)
O2—H2O···O3iii0.78 (3)1.76 (3)2.536 (3)172 (4)
O5—H5O···O6iv0.79 (2)1.73 (2)2.519 (3)177 (4)
O7—H71···O8v0.84 (4)2.05 (4)2.826 (3)155 (3)
O7—H72···O100.76 (4)2.00 (4)2.748 (3)168 (4)
O8—H81···O20.82 (4)1.97 (4)2.772 (3)163 (3)
O8—H82···O90.86 (4)1.79 (4)2.646 (3)174 (3)
O9—H91···O5vi0.87 (4)1.94 (4)2.810 (3)172 (3)
O9—H92···O4i0.83 (4)1.91 (4)2.715 (3)165 (4)
O10—H101···O4vii0.85 (4)1.90 (4)2.744 (3)175 (3)
O10—H102···O9v0.80 (4)1.96 (4)2.741 (3)167 (4)

Symmetry codes: (ii) x+1, y, z; (iii) −x, −y+2, −z+1; (iv) −x, −y+2, −z; (v) −x+1, −y+1, −z+1; (vi) x, y, z+1; (i) −x, −y+1, −z+1; (vii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2201).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, M., Chen, S., Xiang, J., He, H., Yuan, L. & Sun, J. (2006). Cryst. Growth Des.6, 1250–1255.
  • Li, M. & Sun, J.-T. (2007). Acta Cryst. E63, m1370–m1372.
  • Lin, L., Zhang, T., Fan, Y., Ding, D. & Hou, H. (2007). J. Mol. Struct.837, 107–117.
  • Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev.249, 2458–2488.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem.45, 2894–2903. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography