PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m406–m407.
Published online 2009 March 19. doi:  10.1107/S160053680900885X
PMCID: PMC2969003

catena-Poly[[bis­(N-ethyl­ethylene­di­amine-κ2 N,N′)copper(II)]-μ-cyanido-κ2 N:C-[dicyanido-κ2 C-palladium(II)]-μ-cyanido-κ2 C:N]

Abstract

The title compound, [CuPd(CN)4(C4H12N2)2]n, consists of one-dimensional chains. The Cu and Pd atoms are both located on centers of symmetry in an alternating array of [Cu(N-Eten)2]2+ (N-Eten = N-ethyl­ethylenediamine) and [Pd(CN)4]2− units. The Pd—C distances of 1.991 (3) and 1.992 (3) Å are inter­mediate values compared with the analogous NiII and PtII complexes [Akitsu & Einaga (2007 [triangle]). Inorg. Chim. Acta, 360, 497–505]. Due to Jahn–Teller effects, the axial Cu—N bond distance of 2.548 (2) Å is noticeably longer than the equatorial distances [Cu—NH2 = 2.007 (2) and Cu—NHC2H5 = 2.050 (2) Å]. There are interchain hybrogen bonds, with N(—H)(...)N = 3.099(4) Å.

Related literature

For photo-functional cyanide-bridged complexes, see: Escax et al. (2005 [triangle]). For Jahn–Teller switching, see: Falvello (1997 [triangle]). For the photo-induced and thermally accessible structural change of [Cu(en)2](ClO4)2 (en = ethyl­enediamine), see: Akitsu & Einaga (2003 [triangle]). For various coordination polymers designed so far, see: Kuchár et al. (2003 [triangle], 2004 [triangle]); Petříček et al. (2005 [triangle]); Černák et al. (1998 [triangle]); Černák & Abboud (2002 [triangle]); Manna et al. (2007 [triangle]). Ni(en)2 M(CN)4 affords slightly elongated or compressed octa­hedral coordination geometries for M = NiII or PdII, see: Černák et al. (1988 [triangle]). For related complexes, see: [Cu(en)2][Ni(CN)4] (Lokaj et al., 1991 [triangle]); [Cu(en)2][Pd(CN)4] (Černák et al., 2001 [triangle]); [Cu(en)2][Pt(CN)4] (Akitsu & Einaga, 2006a [triangle]). For isotypic structures, see: [Cu(N-Eten)2][Ni(CN)4] and [Cu(N-Eten)2][Pt(CN)4] (Akitsu & Einaga, 2007 [triangle]). For a related mononuclear complex, see: Grenthe et al. (1979 [triangle]). For the two-dimensional CuII–CoIII(CN)6 complex, see: Akitsu & Einaga (2006b [triangle]). For tetra­gonal Jahn–Teller distortion, see: Hathaway & Billing (1970 [triangle]). For a mononuclear CuII complex without Jahn–Teller distortion, see: Zibaseresht & Hartshorn (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m406-scheme1.jpg

Experimental

Crystal data

  • [CuPd(CN)4(C4H12N2)2]
  • M r = 450.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m406-efi1.jpg
  • a = 7.360 (4) Å
  • b = 7.567 (4) Å
  • c = 9.061 (4) Å
  • α = 69.091 (5)°
  • β = 72.490 (6)°
  • γ = 89.680 (6)°
  • V = 446.6 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.21 mm−1
  • T = 296 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Brruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.662, T max = 0.806
  • 2943 measured reflections
  • 1934 independent reflections
  • 1763 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.105
  • S = 0.85
  • 1934 reflections
  • 105 parameters
  • H-atom parameters constrained
  • Δρmax = 1.24 e Å−3
  • Δρmin = −1.28 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900885X/bg2245sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900885X/bg2245Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the Materials Design and Characterization Laboratory, Institute for Solid State Physics, University of Tokyo, for the SQUID facilities.

supplementary crystallographic information

Comment

Associated with certain photo-functional cyanide-bridged complexes, Escax et al. (2005) have focused on the importance that structural strain of the lattice weaken ligand field strength of cyanide ligands. Additionally, so called Jahn-Teller switching (Falvello, 1997) may be a new mechanism for structural and electronic states switching even for cyanide-bridged coordination polymers containing a CuII moiety. We have reported photo-induced and thermally accessible structural change of [Cu(en)2](ClO4)2 (en = ethylenediamine; Akitsu & Einaga, 2003). Moreover, numerous coordination polymers, such as one-dimensional CuII—Ni(CN)4 (Kuchár et al., 2003), CdII—Ni(CN)4 (Petříček et al., 2005), CuII—Pd(CN)4 (Kuchár et al., 2004), CuII—Ag2(CN)3 (Černák et al., 1998), two-dimensional CuI/CuII—Ni(CN)4 (Černák et al., 2002), and cis and trans CuII—Pd(CN)4 complexes (Manna et al., 2007) have been designed so far. Among them, it has been reported that Ni(en)2M(CN)4 affords slightly elongated or compressed octahedral coordination geometries for M = NiII or PdII, respectively (Černák et al., 1988). In this context, we are interested in isostructral complexes by element-substitution and their structural differences, for example, [Cu(en)2][Ni(CN)4] (Lokaj et al., 1991), [Cu(en)2][Pd(CN)4] (Černák et al., 2001), and [Cu(en)2][Pt(CN)4] (Akitsu & Einaga, 2006a). Because we have already reported [Cu(N-Eten)2][Ni(CN)4] and [Cu(N-Eten)2][Pt(CN)4] complexes (Akitsu & Einaga, 2007), we report herein [Cu(N-Eten)2][Pd(CN)4](I)in order to investigate stereochemical effects by ethyl groups as the second series.

Compound (I) consists of one-dimensional chains (Fig. 1). Both Cu and Pd atoms are located on centers of symmetry in the alternative array of [Cu(N-Eten)2]2+ and [Pd(CN)4]2- moieties(Fig. 2). The Pd—C bond distances of (I) (Table 1) and the unit cell volume of (I) (446.6 (4) Å3) is middle value among the corresponding NiII (438.5 (5) Å3) and PtII (448.5 (3) Å3) complexes (Akitsu & Einaga, 2007). As for the [Cu(en)2][M(CN)4] series, similar features were also observed in NiII (333.9 (9) Å3) (Lokaj et al., 1991), PdII (347.63 (6) Å3) (Černák et al., 2001), and PtII (353.9 (4) Å3) (Akitsu & Einaga, 2006a), which are mainly attributed to gradual changes of ionic radii of NiII, PdII, and PtII ions.

The geometry of the [Cu(N-Eten)2]2+ unit in (I) is similar to the related mononuclear (Grenthe et al., 1979) and two-dimensional CuII—CoIII(CN)6 (Akitsu & Einaga, 2006b) complexes.

Due to Jahn–Teller effects the axial Cu—N bond distance of 2.548 (2) Å is sensibly longer than the equatorial ones, (NH2) 2.007 (2) and (NHC2H5) 2.050 (2) Å. However, it should be noted that ethyl groups gave characteristic strain to the crystal lattice and deviate from clearly gradual structural changes of the [Cu(N-Eten)2][M(CN)4] series. The axial Cu1—N1 bond length of 2.548 (2) Å in (I) is comparable to the analogous NiII (2.554 (2) Å) and PtII (2.550 (3) Å) complexes (Akitsu & Einaga, 2007). The degree of tetragonal Jahn–Teller distortion of [Cu(N-Eten)2]2+ moiety in (I) is T = 0.796 (mean T is the ratio of in-plane Cu—N bond lengths / axial Cu—N bond lengths; Hathaway & Billing, 1970). The T values are 0.796 and 0.797 for the analogous NiII and PtII complexes, respectively. On the other hand, as for [Cu(en)2][M(CN)4] series, the axial Cu—N bond lengths exhibited gradual changes for NiII(2.533 (4) Å, Lokaj et al., 1991), PdII (2.544 (2) Å, Černák et al., 2001), and PtII (2.562 (5) Å, Akitsu & Einaga, 2006a) complexes, respectively. Interestingly, absence of Jahn-Teller distortion is also reported for a certain mononuclear CuII complex (Zibaseresht & Hartshorn, 2006). In (I), there are N—H···N hydrogen bonds (Table 2), though some H···N distances are longer than the common values.

Experimental

The compound (I) was obtained by slow diffusion of a methanol solution (36 ml) of [Cu(N-Eten)2](NO3)2 (36.0 mg, 0.100 mmol) onto an aqueous solution (5 ml) of K2[Pd(CN)4] (29.0 mg, 0.100 mmol) at 298 K. After several days, blue single crystals of (I) were obtained from the surface (Yield: 34.4 mg, 76.6%). Anal. Calcd for C12H24CuN8Pd: C 32.00, H 5.37, N 24.88%. Found: C 32.08, H 5.13, N 25.00%. IR (KBr, ν, cm-1): 470, 665, 721, 981, 1068, 1096, 1156, 1377, 1464, 1591, 2129 and 2132 (cyanide), 2853, 2923, 2953, 3162, 3253, 3273, 3310, 3582. Electronic spectrum (diffuse reflectance): 18100 cm-1 (F(Rd) 1.73) (d-d transition of distorted octahedral CuII ion). Weiss constant = -7.76 K (antiferromagnteic interaction). XPS Cu 2p1/2 960, Cu Cu 2p3/2 940 eV (CuII), Pd 3d3/2 357, and Pd 3d5/2 352 eV (PdII).

Refinement

H atoms bonded to C and N atoms were placed in calculated positions, with C—H = 0.97 or 0.96 Å and N—H = 0.91 or 0.90 Å and with Uiso(H) = 1.2Ueq(C and N), and included in the final cycles of refinement using riding constraints.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, -y, 2 - z, (ii) 1 - x, 1 - y, 1 - z, (iii) x - 1, y - 1, z + 1.

Crystal data

[CuPd(CN)4(C4H12N2)2]Z = 1
Mr = 450.33F(000) = 227
Triclinic, P1Dx = 1.674 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.360 (4) ÅCell parameters from 1805 reflections
b = 7.567 (4) Åθ = 2.5–27.5°
c = 9.061 (4) ŵ = 2.21 mm1
α = 69.091 (5)°T = 296 K
β = 72.490 (6)°Prismatic, blue violet
γ = 89.680 (6)°0.20 × 0.15 × 0.10 mm
V = 446.6 (4) Å3

Data collection

Brruker SMART CCD area-detector diffractometer1934 independent reflections
Radiation source: fine-focus sealed tube1763 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −8→9
Tmin = 0.662, Tmax = 0.806k = −4→9
2943 measured reflectionsl = −7→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.105H-atom parameters constrained
S = 0.85w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
1934 reflections(Δ/σ)max < 0.001
105 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = −1.28 e Å3

Special details

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd10.50000.50000.50000.02494 (14)
Cu10.00000.00001.00000.02702 (16)
N10.3378 (3)0.1070 (3)0.7927 (3)0.0451 (6)
N20.8047 (4)0.3301 (4)0.2789 (3)0.0489 (6)
N3−0.0787 (3)0.2641 (3)0.9459 (3)0.0325 (5)
H3C−0.14840.27981.03980.039*
H3D0.02560.35100.89580.039*
N4−0.0720 (3)0.0022 (3)0.7978 (2)0.0302 (4)
H4C0.0309−0.02880.72990.036*
C10.4025 (3)0.2473 (4)0.6839 (3)0.0323 (5)
C20.6910 (4)0.3871 (3)0.3619 (3)0.0318 (5)
C3−0.1934 (4)0.2879 (4)0.8339 (3)0.0414 (6)
H3A−0.20250.42190.77850.050*
H3B−0.32200.22340.89690.050*
C4−0.0960 (4)0.2037 (4)0.7076 (3)0.0381 (6)
H4A−0.17280.20890.63620.046*
H4B0.02820.27540.63840.046*
C5−0.2390 (4)−0.1323 (4)0.8340 (3)0.0398 (6)
H5A−0.3545−0.08760.88800.048*
H5B−0.2271−0.25550.91180.048*
C6−0.2605 (5)−0.1566 (5)0.6817 (5)0.0580 (9)
H6A−0.3726−0.24340.71390.070*
H6B−0.1493−0.20630.63010.070*
H6C−0.2732−0.03550.60410.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.02339 (19)0.0266 (2)0.01896 (19)0.00152 (13)−0.00348 (13)−0.00440 (13)
Cu10.0346 (3)0.0233 (3)0.0227 (3)0.0049 (2)−0.0126 (2)−0.0053 (2)
N10.0370 (12)0.0373 (13)0.0405 (13)−0.0009 (10)−0.0029 (10)0.0013 (10)
N20.0459 (14)0.0506 (14)0.0457 (14)0.0090 (12)−0.0039 (12)−0.0219 (12)
N30.0380 (12)0.0271 (10)0.0255 (10)0.0025 (9)−0.0059 (9)−0.0052 (8)
N40.0275 (10)0.0363 (11)0.0248 (10)0.0044 (8)−0.0080 (8)−0.0096 (8)
C10.0256 (11)0.0370 (13)0.0289 (12)0.0042 (10)−0.0041 (9)−0.0099 (10)
C20.0312 (12)0.0311 (12)0.0270 (12)0.0027 (10)−0.0049 (10)−0.0074 (9)
C30.0406 (15)0.0352 (13)0.0427 (16)0.0100 (12)−0.0156 (12)−0.0061 (11)
C40.0445 (15)0.0374 (13)0.0264 (12)0.0022 (12)−0.0167 (11)−0.0004 (10)
C50.0377 (14)0.0421 (15)0.0399 (14)0.0006 (12)−0.0134 (12)−0.0146 (12)
C60.066 (2)0.058 (2)0.074 (2)0.0132 (17)−0.0404 (19)−0.0370 (18)

Geometric parameters (Å, °)

Pd1—C21.991 (3)N4—C51.479 (3)
Pd1—C2i1.991 (3)N4—C41.489 (3)
Pd1—C1i1.992 (3)N4—H4C0.9100
Pd1—C11.992 (3)C3—C41.500 (4)
Cu1—N12.548 (2)C3—H3A0.9700
Cu1—N3ii2.007 (2)C3—H3B0.9700
Cu1—N32.007 (2)C4—H4A0.9700
Cu1—N4ii2.050 (2)C4—H4B0.9700
Cu1—N42.050 (2)C5—C61.508 (4)
N1—C11.141 (3)C5—H5A0.9700
N2—C21.140 (3)C5—H5B0.9700
N3—C31.470 (3)C6—H6A0.9600
N3—H3C0.9000C6—H6B0.9600
N3—H3D0.9000C6—H6C0.9600
C2—Pd1—C2i180.000 (1)N2—C2—Pd1177.0 (2)
C2—Pd1—C1i87.83 (10)N3—C3—C4107.8 (2)
C2i—Pd1—C1i92.17 (10)N3—C3—H3A110.1
C2—Pd1—C192.17 (10)C4—C3—H3A110.1
C2i—Pd1—C187.83 (10)N3—C3—H3B110.1
C1i—Pd1—C1179.999 (1)C4—C3—H3B110.1
N3ii—Cu1—N3180.0H3A—C3—H3B108.5
N3ii—Cu1—N4ii85.55 (9)N4—C4—C3108.5 (2)
N3—Cu1—N4ii94.45 (9)N4—C4—H4A110.0
N3ii—Cu1—N494.45 (9)C3—C4—H4A110.0
N3—Cu1—N485.55 (9)N4—C4—H4B110.0
N4ii—Cu1—N4180.0C3—C4—H4B110.0
C3—N3—Cu1107.38 (16)H4A—C4—H4B108.4
C3—N3—H3C110.2N4—C5—C6113.9 (2)
Cu1—N3—H3C110.2N4—C5—H5A108.8
C3—N3—H3D110.2C6—C5—H5A108.8
Cu1—N3—H3D110.2N4—C5—H5B108.8
H3C—N3—H3D108.5C6—C5—H5B108.8
C5—N4—C4112.8 (2)H5A—C5—H5B107.7
C5—N4—Cu1116.00 (15)C5—C6—H6A109.5
C4—N4—Cu1105.94 (16)C5—C6—H6B109.5
C5—N4—H4C107.2H6A—C6—H6B109.5
C4—N4—H4C107.2C5—C6—H6C109.5
Cu1—N4—H4C107.2H6A—C6—H6C109.5
N1—C1—Pd1176.2 (2)H6B—C6—H6C109.5
N4ii—Cu1—N3—C3−163.23 (16)Cu1—N3—C3—C4−42.9 (2)
N4—Cu1—N3—C316.78 (16)C5—N4—C4—C388.7 (3)
N3ii—Cu1—N4—C566.55 (19)Cu1—N4—C4—C3−39.2 (2)
N3—Cu1—N4—C5−113.45 (19)N3—C3—C4—N455.7 (3)
N3ii—Cu1—N4—C4−167.52 (16)C4—N4—C5—C670.2 (3)
N3—Cu1—N4—C412.47 (16)Cu1—N4—C5—C6−167.4 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3C···N2iii0.902.263.099 (4)156

Symmetry codes: (iii) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2245).

References

  • Akitsu, T. & Einaga, Y. (2003). Bull. Chem. Soc. Jpn, 77, 763–764.
  • Akitsu, T. & Einaga, Y. (2006a). Acta Cryst. E62, m862–m864.
  • Akitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, m750–m752.
  • Akitsu, T. & Einaga, Y. (2007). Inorg. Chim. Acta, 360, 497–505.
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Černák, J. & Abboud, K. A. (2002). Acta Cryst. C58, m167–m170. [PubMed]
  • Černák, J., Chomič, J., Baloghová, D. & Dunaj-Jurčo, M. (1988). Acta Cryst. C44, 1902–1905.
  • Černák, J., Chomič, J., Gravereau, P., Orendacova, A., Orendac, M., Kovac, J., Feher, A. & Kappenstein, C. (1998). Inorg. Chim. Acta, 281, 134–140.
  • Černák, J., Skorsepa, J., Abboud, K. A., Meisel, M. W., Orendac, M., Orendacova, A. & Feher, A. (2001). Inorg. Chim. Acta, 326, 3–8.
  • Escax, V., Champion, G., Arrio, M.-A., Zacchigna, M., Cartier dit Moulin, C. & Bleuzen, A. (2005). Angew. Chem. Int. Ed.44, 4798–4801. [PubMed]
  • Falvello, L. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4463–4475.
  • Grenthe, I., Paoletti, P., Sandstorm, M. & Glikberg, S. (1979). Inorg. Chem.18, 2687–2692.
  • Hathaway, B. J. & Billing, D. E. (1970). Coord. Chem. Rev.5, 143–207.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Kuchár, J., Černák, J. & Abboud, K. A. (2004). Acta Cryst. C60, m492–m494. [PubMed]
  • Kuchár, J., Černák, J., Mayerova, Z., Kubacek, P. & Zak, Z. (2003). Solid State Phenom 90–91, 323–328.
  • Lokaj, J., Gyerová, K., Sopková, A., Sivý, J., Kettmann, V. & Vrábel, V. (1991). Acta Cryst. C47, 2447–2448.
  • Manna, S. C., Ribas, J., Zangrando, E. & Chaudhuri, N. R. (2007). Polyhedron, 26, 3189–3198.
  • Petříček, V., Dušek, M. & Černák, J. (2005). Acta Cryst. B61, 280–286. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zibaseresht, R. & Hartshorn, R. M. (2006). Acta Cryst. E62, i19–i22.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography