PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o898–o899.
Published online 2009 March 28. doi:  10.1107/S1600536809010502
PMCID: PMC2968991

4,5,7,8,17-Penta­hydr­oxy-14,18-dimethyl-6-methyl­ene-3,10-dioxapenta­cyclo­[9.8.0.01,7.04,19.013,18]nona­dec-14-ene-9,16-dione methanol solvate dihydrate

Abstract

The title quassinoid compound, C20H24O9·CH3OH·2H2O, is a natural eurycomanone isolated from the roots of Eurycoma longifolia. The mol­ecules contain a fused five-ring system, with one tetra­hydro­furan ring adopting an envelope conformation, one tetra­hydro­pyran-2-one ring in a screw boat conformation, one cyclo­hexenone ring in a half-chair conformation and two cyclo­hexane rings in chair conformations. Intra­molecular C—H(...)O inter­actions generate S(5) ring motifs and an O—H(...)O inter­action generates an S(7) ring motif. In the crystal, mol­ecules are linked via inter­molecular O—H(...)O inter­actions along the b axis and further stacked along a axis. The absolute configuration of the title compound was inferred from previously solved structures of its analogues.

Related literature

For bond-length data, see Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]). For ring conformations, see Cremer & Pople (1975 [triangle]). For quassinoids and bioactivity, see Itokawa et al. (1993 [triangle]); Chan et al. (1992 [triangle]); Kardono et al. (1991 [triangle]); Itokawa et al. (1992 [triangle]); Morita et al. (1992 [triangle]); Morita et al. (1993 [triangle]); Tada et al. (1991 [triangle]); Ang et al. (1995 [triangle]); Chan et al. (2004 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o898-scheme1.jpg

Experimental

Crystal data

  • C20H24O9·CH4O·2H2O
  • M r = 476.47
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o898-efi1.jpg
  • a = 9.1817 (1) Å
  • b = 10.7806 (2) Å
  • c = 21.7817 (3) Å
  • V = 2156.04 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100 K
  • 0.43 × 0.28 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.950, T max = 0.987
  • 27636 measured reflections
  • 3577 independent reflections
  • 3352 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.127
  • S = 1.09
  • 3577 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 1.08 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010502/at2747sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010502/at2747Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KLC and CHT thank Universiti Sains Malaysia for a Research University grant No. 1001/PFARMASI/813006. HKF and SCT thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. YCS thanks Universiti Sains Malaysia for a studentship award.

supplementary crystallographic information

Comment

Eurycoma longifolia Jack is a tall, slender shrub-tree, commonly found in lowland forests below 500 meters above sea level in Southeast Asia. The roots of this Simaroubaceae plant are used in folk medicine for intermittent fever (malaria), dysentery, glandular swelling and aphrodisiac properties. Various classes of chemical constituents (Itokawa et al., 1993, Chan et al., 1992, Kardono et al., 1991, Itokawa et al., 1992, Morita et al., 1992, Morita et al., 1993) have been identified and some have shown antiulcer (Tada et al., 1991), cytotoxic (Kardono et al., 1991, Itokawa et al., 1992) and antimalarial (Ang et al., 1995, Chan et al., 2004) activities. In our continuing search for the bioactive compounds from E. longifolia, we have isolated eurycomanone (1), a quassinoid in crystalline form.

The title compound (Fig. 1), contains quassinoid, one molecule of methanol and two molecules of water solvents. The bond lengths and angles are within normal ranges (Allen et al., 1987). The molecule of the title compound contains a fused five-ring system A/B/C/D/E (Scheme 1). The A/B and B/D junctions are trans-fused, whereas B/C, B/E and C/D are cis-fused (Fig 1). The cyclohexenone ring A (C1—C6) has a half-chair conformation with puckering parameters of Q = 0.507 (2) Å, Θ = 130.2 (3)° and [var phi] = 97.3 (4)°. The cyclohexane ring B (C1-C6-C7-C16-C14-C15) and D (C7-C8-C9-C10-C11-C16) adopt a chair conformation with puckering parameters of Q = 0.565 (2) Å, Θ = 154.6 (3)° and [var phi] = 179.8 (6)° and Q = 0.660 (2) Å, Θ = 151.68 (17)° and [var phi] = 183.1 (4)° respectively. The tetrahydro-pyran-2-one ring C (O9-C13-C12-C11-C16-14) has a screw boat conformation with puckering parameters Q = 0.502 (3) Å, Θ = 38.4 (2)° and [var phi] = 193.4 (5)°. The tetrahydro-furan ring E (C7-C8-O4-C17-C16) is in an envelope conformation with puckering parameters of Q = 0.450 (2) Å and [var phi] = 254.5 (3)°.

The intramolecular interactions C1—H1A···O9, C17—H17B···O6, C19—H19B···O2 and C7—H7A···O5 generate S(5) ring motifs, and O3—H3···O2 generates an S(7) ring motif (Bernstein et al., 1995). The crystal packing shows that the molecules were linked via intermolecular O—H···O interactions along b axis and further stacked along a axis (Fig 2). The absolute configuration of the title compound was inferred from previously solved structures of its analogues (Tada et al., 1991).

Experimental

The air-dried powdered roots of E. longifolia (11.6 kg) were extracted with MeOH. The MeOH extract on evaporation to dryness yielded 485 g of dark brown residue which was next chromatographed on a Diaion HP 20 column using H2O-MeOH (1:0 - 0:1) gradient mixtures to afford 4 fractions (Fr 1 - 4). Fr 2 was concentrated under vacuum to give 52.2 g of residue. The residue was resuspended in water and then partitioned successively with ethyl acetate and saturated n-butanol to yield three subfractions. The n-BuOH subfraction (20.4 g) was further fractionated on a silica gel column using CHCl3-MeOH (1:0 - 1:1) gradient mixtures to obtain 7 portions (A1-A7). A3 was further purified by centrifugal silica gel TLC with CHCl3-MeOH (1:0 - 1:1) gradient mixtures. Upon solvent removal, the residue obtained on subsequent recrystallization from CHCl3-MeOH (9:1, v/v) at room temperature afforded 1 as colourless crystals (75.3 mg).

Refinement

The H atoms bound to O1W and O2W were located from the difference Fourier map and constrained to ride with the parent atom with Uiso(H)= 1.5 Ueq(O). The H atoms of the hydroxy groups were positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.82 Å. The rest of the hydrogen atoms were positioned geometrically with a riding model approximation with C—H = 0.93-0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was used for the hydrogen of the methyl groups. As there are not enough anomalous dispersion to determine the aboslute configuration, 2770 Friedel pairs were merged before final refinement. The absolute stereochemistry of eurycomanone was inferred following those reported (Tada et al., 1991) for its analogues.

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal packing of (I), shows that the molecules were linked via intermolecular O—H···O interactions along b axis and further stacked along a axis. Intermolecular interactions are drawn as dashed lines.

Crystal data

C20H24O9·CH4O·2H2OF(000) = 1016
Mr = 476.47Dx = 1.468 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9889 reflections
a = 9.1817 (1) Åθ = 2.4–30.1°
b = 10.7806 (2) ŵ = 0.12 mm1
c = 21.7817 (3) ÅT = 100 K
V = 2156.04 (6) Å3Block, colourless
Z = 40.43 × 0.28 × 0.11 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3577 independent reflections
Radiation source: fine-focus sealed tube3352 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −12→12
Tmin = 0.950, Tmax = 0.987k = −15→15
27636 measured reflectionsl = −29→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0739P)2 + 1.2123P] where P = (Fo2 + 2Fc2)/3
3577 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1926 (2)0.29462 (17)1.07263 (8)0.0182 (4)
O20.3034 (2)0.07030 (16)1.05042 (8)0.0175 (4)
H20.32230.09971.08420.026*
O30.28241 (19)−0.14352 (15)1.00393 (7)0.0117 (3)
H30.2817−0.07571.02100.018*
O40.22993 (18)−0.17614 (15)0.90312 (7)0.0118 (3)
O50.58130 (19)−0.16373 (15)0.97902 (7)0.0129 (3)
H50.6465−0.21460.98430.019*
O60.5152 (2)−0.13426 (15)0.77017 (7)0.0127 (3)
H60.4834−0.20450.76480.019*
O70.78562 (19)−0.09069 (17)0.82090 (8)0.0147 (3)
H70.8241−0.12580.85010.022*
O80.74680 (19)0.14137 (17)0.77962 (8)0.0167 (4)
O90.51228 (19)0.13846 (15)0.79549 (7)0.0126 (3)
C10.3189 (3)0.22030 (19)0.89489 (10)0.0101 (4)
H1A0.42550.22490.89460.012*
C20.2671 (3)0.3479 (2)0.91422 (11)0.0130 (4)
C30.2330 (3)0.3740 (2)0.97285 (11)0.0152 (4)
H3A0.20230.45360.98300.018*
C40.2431 (3)0.2802 (2)1.02085 (11)0.0133 (4)
C50.3254 (3)0.1614 (2)1.00468 (10)0.0112 (4)
H5A0.42960.18101.00350.013*
C60.2803 (2)0.11364 (19)0.94038 (10)0.0093 (4)
C70.3786 (3)0.00071 (19)0.92185 (9)0.0086 (4)
H7A0.47830.01890.93510.010*
C80.3392 (2)−0.1308 (2)0.94491 (9)0.0094 (4)
C90.4726 (3)−0.21530 (19)0.93946 (9)0.0106 (4)
H9A0.4470−0.29840.95420.013*
C100.5283 (3)−0.2248 (2)0.87386 (10)0.0108 (4)
C110.5208 (3)−0.10845 (19)0.83436 (9)0.0094 (4)
C120.6596 (3)−0.0292 (2)0.84086 (10)0.0105 (4)
H12A0.6718−0.00590.88400.013*
C130.6438 (3)0.0881 (2)0.80244 (10)0.0118 (4)
C140.3716 (3)0.0779 (2)0.80774 (10)0.0104 (4)
H14A0.33270.04720.76870.012*
C150.2754 (3)0.1834 (2)0.82945 (10)0.0119 (4)
H15A0.17420.15760.82880.014*
H15B0.28610.25400.80220.014*
C160.3828 (3)−0.0312 (2)0.85175 (10)0.0094 (4)
C170.2494 (3)−0.1166 (2)0.84404 (10)0.0118 (4)
H17A0.1638−0.06870.83320.014*
H17B0.2669−0.17790.81230.014*
C180.2638 (3)0.4474 (2)0.86586 (12)0.0194 (5)
H18A0.25060.52680.88500.029*
H18B0.18460.43190.83810.029*
H18C0.35400.44690.84360.029*
C190.1144 (3)0.0868 (2)0.94083 (11)0.0125 (4)
H19A0.06180.16370.94230.019*
H19B0.09040.03770.97620.019*
H19C0.08830.04230.90430.019*
C200.5852 (3)−0.3310 (2)0.85366 (11)0.0154 (5)
H20A0.5908−0.39920.87970.018*
H20B0.6192−0.33680.81360.018*
O100.9816 (2)0.5246 (2)0.75796 (10)0.0265 (4)
H101.05880.52270.73900.040*
C210.9754 (3)0.6332 (3)0.79372 (14)0.0273 (6)
H21A0.89550.62760.82200.041*
H21B0.96190.70370.76740.041*
H21C1.06480.64240.81620.041*
O1W0.9259 (2)0.8195 (2)0.91766 (10)0.0283 (5)
H1W11.02160.81370.91730.042*
H2W10.89590.75740.93710.042*
O2W0.8990 (3)0.3466 (2)0.84211 (9)0.0341 (6)
H1W20.83460.29080.82210.051*
H2W20.92610.40120.81610.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0210 (9)0.0187 (8)0.0150 (8)0.0028 (7)0.0020 (7)−0.0043 (7)
O20.0321 (10)0.0119 (7)0.0086 (7)0.0001 (7)0.0005 (7)−0.0005 (6)
O30.0158 (8)0.0101 (7)0.0092 (7)0.0001 (6)0.0037 (6)0.0008 (5)
O40.0128 (7)0.0118 (7)0.0108 (7)−0.0035 (6)−0.0018 (6)0.0019 (6)
O50.0141 (8)0.0127 (7)0.0121 (7)0.0033 (6)−0.0032 (6)−0.0012 (6)
O60.0206 (8)0.0112 (7)0.0063 (6)−0.0015 (7)0.0009 (6)−0.0017 (5)
O70.0134 (8)0.0162 (8)0.0146 (7)0.0044 (7)0.0038 (6)0.0033 (6)
O80.0171 (9)0.0142 (7)0.0187 (8)−0.0025 (7)0.0036 (7)0.0023 (6)
O90.0142 (8)0.0098 (7)0.0136 (7)−0.0001 (6)0.0011 (6)0.0032 (6)
C10.0122 (9)0.0079 (8)0.0102 (9)0.0010 (7)0.0000 (8)0.0003 (7)
C20.0134 (10)0.0084 (9)0.0173 (10)0.0004 (8)−0.0002 (8)0.0008 (8)
C30.0159 (11)0.0111 (9)0.0186 (11)0.0014 (8)0.0004 (9)−0.0026 (8)
C40.0139 (11)0.0100 (9)0.0159 (10)0.0005 (8)−0.0012 (8)−0.0036 (8)
C50.0152 (10)0.0090 (9)0.0093 (9)0.0017 (8)−0.0001 (8)−0.0021 (7)
C60.0113 (9)0.0073 (8)0.0093 (8)0.0015 (8)−0.0011 (7)−0.0009 (7)
C70.0107 (9)0.0080 (8)0.0071 (8)0.0001 (7)−0.0005 (8)−0.0001 (7)
C80.0102 (9)0.0105 (9)0.0075 (8)−0.0004 (8)0.0010 (7)−0.0001 (7)
C90.0141 (10)0.0088 (8)0.0088 (8)0.0002 (8)0.0002 (8)0.0002 (7)
C100.0142 (10)0.0093 (8)0.0089 (9)0.0000 (8)0.0001 (8)−0.0006 (7)
C110.0135 (10)0.0085 (8)0.0063 (8)0.0000 (8)−0.0001 (8)−0.0007 (7)
C120.0134 (10)0.0094 (9)0.0088 (8)0.0001 (8)0.0000 (8)−0.0001 (7)
C130.0158 (11)0.0100 (9)0.0097 (9)−0.0014 (8)0.0013 (8)−0.0020 (7)
C140.0128 (10)0.0103 (9)0.0081 (9)−0.0009 (8)−0.0012 (8)0.0008 (7)
C150.0151 (10)0.0112 (9)0.0094 (9)−0.0001 (8)−0.0015 (8)0.0013 (7)
C160.0130 (10)0.0080 (9)0.0072 (8)−0.0012 (8)−0.0015 (7)0.0003 (7)
C170.0132 (10)0.0128 (10)0.0094 (9)−0.0018 (8)−0.0015 (8)0.0003 (7)
C180.0282 (13)0.0100 (9)0.0199 (11)0.0022 (9)−0.0016 (10)0.0030 (8)
C190.0107 (10)0.0120 (9)0.0147 (10)0.0004 (8)0.0005 (8)−0.0008 (8)
C200.0230 (12)0.0115 (10)0.0116 (9)0.0034 (9)0.0007 (9)−0.0010 (8)
O100.0200 (10)0.0323 (11)0.0272 (10)−0.0057 (9)−0.0002 (8)0.0013 (8)
C210.0211 (13)0.0325 (14)0.0283 (13)0.0028 (12)0.0014 (11)−0.0004 (12)
O1W0.0188 (9)0.0352 (11)0.0310 (10)−0.0017 (9)−0.0018 (8)0.0140 (9)
O2W0.0531 (15)0.0298 (11)0.0195 (9)−0.0224 (11)0.0129 (10)−0.0082 (8)

Geometric parameters (Å, °)

O1—C41.229 (3)C9—C101.521 (3)
O2—C51.414 (3)C9—H9A0.9800
O2—H20.8200C10—C201.333 (3)
O3—C81.394 (3)C10—C111.523 (3)
O3—H30.8200C11—C121.541 (3)
O4—C81.440 (3)C11—C161.562 (3)
O4—C171.449 (3)C12—C131.523 (3)
O5—C91.431 (3)C12—H12A0.9800
O5—H50.8200C14—C151.516 (3)
O6—C111.426 (2)C14—C161.520 (3)
O6—H60.8200C14—H14A0.9800
O7—C121.402 (3)C15—H15A0.9700
O7—H70.8200C15—H15B0.9700
O8—C131.213 (3)C16—C171.542 (3)
O9—C131.333 (3)C17—H17A0.9700
O9—C141.472 (3)C17—H17B0.9700
C1—C21.516 (3)C18—H18A0.9600
C1—C151.533 (3)C18—H18B0.9600
C1—C61.559 (3)C18—H18C0.9600
C1—H1A0.9800C19—H19A0.9600
C2—C31.345 (3)C19—H19B0.9600
C2—C181.503 (3)C19—H19C0.9600
C3—C41.458 (3)C20—H20A0.9300
C3—H3A0.9300C20—H20B0.9300
C4—C51.528 (3)O10—C211.408 (4)
C5—C61.549 (3)O10—H100.8200
C5—H5A0.9800C21—H21A0.9600
C6—C191.551 (3)C21—H21B0.9600
C6—C71.568 (3)C21—H21C0.9600
C7—C81.547 (3)O1W—H1W10.8814
C7—C161.566 (3)O1W—H2W10.8396
C7—H7A0.9800O2W—H1W20.9487
C8—C91.531 (3)O2W—H2W20.8533
C5—O2—H2109.5C10—C11—C16109.83 (18)
C8—O3—H3109.5C12—C11—C16110.67 (17)
C8—O4—C17108.97 (16)O7—C12—C13107.48 (18)
C9—O5—H5109.5O7—C12—C11113.11 (18)
C11—O6—H6109.5C13—C12—C11109.31 (18)
C12—O7—H7109.5O7—C12—H12A109.0
C13—O9—C14126.43 (17)C13—C12—H12A109.0
C2—C1—C15114.35 (19)C11—C12—H12A109.0
C2—C1—C6114.97 (18)O8—C13—O9117.8 (2)
C15—C1—C6109.89 (17)O8—C13—C12123.0 (2)
C2—C1—H1A105.6O9—C13—C12119.14 (19)
C15—C1—H1A105.6O9—C14—C15103.60 (17)
C6—C1—H1A105.6O9—C14—C16113.43 (18)
C3—C2—C18120.8 (2)C15—C14—C16115.04 (18)
C3—C2—C1121.8 (2)O9—C14—H14A108.2
C18—C2—C1117.3 (2)C15—C14—H14A108.2
C2—C3—C4121.4 (2)C16—C14—H14A108.2
C2—C3—H3A119.3C14—C15—C1109.45 (18)
C4—C3—H3A119.3C14—C15—H15A109.8
O1—C4—C3123.1 (2)C1—C15—H15A109.8
O1—C4—C5120.3 (2)C14—C15—H15B109.8
C3—C4—C5116.6 (2)C1—C15—H15B109.8
O2—C5—C4110.43 (18)H15A—C15—H15B108.2
O2—C5—C6111.59 (18)C14—C16—C17109.82 (18)
C4—C5—C6110.77 (18)C14—C16—C11108.34 (18)
O2—C5—H5A108.0C17—C16—C11107.41 (17)
C4—C5—H5A108.0C14—C16—C7116.32 (17)
C6—C5—H5A108.0C17—C16—C7102.56 (17)
C5—C6—C19108.61 (18)C11—C16—C7111.96 (17)
C5—C6—C1105.59 (16)O4—C17—C16105.42 (17)
C19—C6—C1111.42 (18)O4—C17—H17A110.7
C5—C6—C7109.69 (17)C16—C17—H17A110.7
C19—C6—C7114.94 (18)O4—C17—H17B110.7
C1—C6—C7106.17 (17)C16—C17—H17B110.7
C8—C7—C1696.96 (16)H17A—C17—H17B108.8
C8—C7—C6119.59 (18)C2—C18—H18A109.5
C16—C7—C6115.84 (17)C2—C18—H18B109.5
C8—C7—H7A107.9H18A—C18—H18B109.5
C16—C7—H7A107.9C2—C18—H18C109.5
C6—C7—H7A107.9H18A—C18—H18C109.5
O3—C8—O4106.79 (17)H18B—C18—H18C109.5
O3—C8—C9108.20 (17)C6—C19—H19A109.5
O4—C8—C9107.87 (17)C6—C19—H19B109.5
O3—C8—C7118.47 (17)H19A—C19—H19B109.5
O4—C8—C7105.57 (17)C6—C19—H19C109.5
C9—C8—C7109.47 (18)H19A—C19—H19C109.5
O5—C9—C10110.95 (19)H19B—C19—H19C109.5
O5—C9—C8106.27 (17)C10—C20—H20A120.0
C10—C9—C8112.45 (17)C10—C20—H20B120.0
O5—C9—H9A109.0H20A—C20—H20B120.0
C10—C9—H9A109.0C21—O10—H10109.5
C8—C9—H9A109.0O10—C21—H21A109.5
C20—C10—C9120.0 (2)O10—C21—H21B109.5
C20—C10—C11122.6 (2)H21A—C21—H21B109.5
C9—C10—C11117.39 (18)O10—C21—H21C109.5
O6—C11—C10113.25 (17)H21A—C21—H21C109.5
O6—C11—C12103.16 (17)H21B—C21—H21C109.5
C10—C11—C12111.51 (18)H1W1—O1W—H2W1105.9
O6—C11—C16108.23 (17)H1W2—O2W—H2W2108.4
C15—C1—C2—C3148.4 (2)C20—C10—C11—O627.0 (3)
C6—C1—C2—C319.9 (3)C9—C10—C11—O6−155.1 (2)
C15—C1—C2—C18−35.2 (3)C20—C10—C11—C12−88.9 (3)
C6—C1—C2—C18−163.7 (2)C9—C10—C11—C1289.0 (2)
C18—C2—C3—C4−176.8 (2)C20—C10—C11—C16148.1 (2)
C1—C2—C3—C4−0.5 (4)C9—C10—C11—C16−34.0 (3)
C2—C3—C4—O1−168.7 (2)O6—C11—C12—O7−59.4 (2)
C2—C3—C4—C513.3 (3)C10—C11—C12—O762.5 (2)
O1—C4—C5—O213.0 (3)C16—C11—C12—O7−174.96 (17)
C3—C4—C5—O2−168.9 (2)O6—C11—C12—C1360.3 (2)
O1—C4—C5—C6137.2 (2)C10—C11—C12—C13−177.82 (18)
C3—C4—C5—C6−44.8 (3)C16—C11—C12—C13−55.3 (2)
O2—C5—C6—C1963.6 (2)C14—O9—C13—O8166.4 (2)
C4—C5—C6—C19−59.9 (2)C14—O9—C13—C12−16.6 (3)
O2—C5—C6—C1−176.83 (19)O7—C12—C13—O8−27.5 (3)
C4—C5—C6—C159.7 (2)C11—C12—C13—O8−150.6 (2)
O2—C5—C6—C7−62.8 (2)O7—C12—C13—O9155.59 (19)
C4—C5—C6—C7173.71 (18)C11—C12—C13—O932.5 (3)
C2—C1—C6—C5−48.1 (2)C13—O9—C14—C15147.4 (2)
C15—C1—C6—C5−178.84 (18)C13—O9—C14—C1622.0 (3)
C2—C1—C6—C1969.6 (2)O9—C14—C15—C1−73.9 (2)
C15—C1—C6—C19−61.1 (2)C16—C14—C15—C150.4 (3)
C2—C1—C6—C7−164.58 (18)C2—C1—C15—C14161.25 (19)
C15—C1—C6—C764.7 (2)C6—C1—C15—C14−67.7 (2)
C5—C6—C7—C883.5 (2)O9—C14—C16—C17−159.36 (18)
C19—C6—C7—C8−39.2 (3)C15—C14—C16—C1781.6 (2)
C1—C6—C7—C8−162.86 (18)O9—C14—C16—C11−42.3 (2)
C5—C6—C7—C16−161.04 (18)C15—C14—C16—C11−161.36 (18)
C19—C6—C7—C1676.2 (2)O9—C14—C16—C784.8 (2)
C1—C6—C7—C16−47.4 (2)C15—C14—C16—C7−34.2 (3)
C17—O4—C8—O3154.14 (17)O6—C11—C16—C14−51.0 (2)
C17—O4—C8—C9−89.8 (2)C10—C11—C16—C14−175.06 (18)
C17—O4—C8—C727.2 (2)C12—C11—C16—C1461.4 (2)
C16—C7—C8—O3−161.90 (19)O6—C11—C16—C1767.6 (2)
C6—C7—C8—O3−36.9 (3)C10—C11—C16—C17−56.5 (2)
C16—C7—C8—O4−42.4 (2)C12—C11—C16—C17179.97 (17)
C6—C7—C8—O482.6 (2)O6—C11—C16—C7179.46 (17)
C16—C7—C8—C973.4 (2)C10—C11—C16—C755.4 (2)
C6—C7—C8—C9−161.50 (18)C12—C11—C16—C7−68.2 (2)
O3—C8—C9—O5−67.8 (2)C8—C7—C16—C14161.50 (19)
O4—C8—C9—O5176.98 (16)C6—C7—C16—C1433.8 (3)
C7—C8—C9—O562.6 (2)C8—C7—C16—C1741.6 (2)
O3—C8—C9—C10170.59 (18)C6—C7—C16—C17−86.1 (2)
O4—C8—C9—C1055.4 (2)C8—C7—C16—C11−73.2 (2)
C7—C8—C9—C10−59.0 (2)C6—C7—C16—C11159.07 (18)
O5—C9—C10—C2095.7 (3)C8—O4—C17—C161.0 (2)
C8—C9—C10—C20−145.4 (2)C14—C16—C17—O4−152.40 (18)
O5—C9—C10—C11−82.2 (2)C11—C16—C17—O489.98 (19)
C8—C9—C10—C1136.6 (3)C7—C16—C17—O4−28.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.881.942.810 (2)169
O2—H2···O2Wii0.821.852.656 (3)169
O1W—H2W1···O3iii0.842.062.873 (3)163
O3—H3···O20.821.712.525 (2)171
O2W—H1W2···O80.952.032.950 (3)164
O2W—H2W2···O100.851.912.760 (3)179
O5—H5···O3iv0.821.992.805 (2)172
O6—H6···O9v0.822.142.848 (2)144
O7—H7···O1Wvi0.821.842.653 (3)171
O10—H10···O7vii0.822.293.011 (3)147
O10—H10···O8vii0.822.232.911 (3)140
C1—H1A···O90.982.482.936 (3)108
C1—H1A···O1iii0.982.563.507 (3)162
C7—H7A···O50.982.382.856 (3)109
C12—H12A···O1iii0.982.473.168 (3)128
C17—H17A···O10v0.972.603.428 (3)144
C17—H17B···O60.972.502.929 (3)107
C19—H19B···O20.962.562.957 (3)105

Symmetry codes: (i) x+1, y+1, z; (ii) x−1/2, −y+1/2, −z+2; (iii) x+1/2, −y+1/2, −z+2; (iv) x+1/2, −y−1/2, −z+2; (v) −x+1, y−1/2, −z+3/2; (vi) x, y−1, z; (vii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2747).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Ang, H. H., Chan, K. L. & Mak, J. W. (1995). Planta Med 61, 177–178. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chan, K.-L., Choo, C.-Y., Abdullah, N. R. & Ismail, Z. (2004). J. Ethnopharmacol 92, 223–227. [PubMed]
  • Chan, K. L., Iitaka, Y., Noguchi, H., Sugiyama, H., Saito, I. & Sankawa, U. (1992). Phytochemistry, 31, 4295–4298.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Itokawa, H., Kishi, E., Morita, H. & Takeya, K. (1992). Chem. Pharm. Bull.40, 1053–1055.
  • Itokawa, H., Qin, X. R., Morita, H., Takeya, K. & Iitaka, Y. (1993). Chem. Pharm. Bull.41, 403–405.
  • Kardono, L. B. S., Angerhofer, C. K., Tsauri, S., Padmawinata, K., Pezzuto, J. M. & Kinghorn, A. D. (1991). J. Nat. Prod.54, 1360–1367. [PubMed]
  • Morita, H., Kishi, E., Takeya, K. & Itokawa, H. (1992). Phytochemistry, 31, 3993–3995.
  • Morita, H., Kishi, E., Takeya, K., Itokawa, H. & Iitaka, Y. (1993). Phytochemistry, 34, 765–771.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tada, H., Yasuda, F., Otani, K., Doteuchi, M., Ishihara, Y. & Shiro, M. (1991). Eur. J. Med. Chem.26, 345–349.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography