PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o902.
Published online 2009 March 28. doi:  10.1107/S1600536809011027
PMCID: PMC2968990

2-[6-Thioxo-5-(2,4,6-trimethyl­phen­yl)-1,3,5-thia­diazinan-3-yl]acetic acid

Abstract

In the mol­ecule of the title compound, C14H18N2O2S2, the 1,3,5-thia­diazinane-2-thione ring adopts an envelope conformation with one of the N atoms at the flap position. The plane throught the five co-planar atoms of the heterocycle is oriented at a dihedral angle of 80.59 (8)° with respect to the aromatic ring. In the crystal structure, weak inter­molecular O—H(...)S inter­actions link the mol­ecules into chains along the b axis.

Related literature

For related structures, see: Arfan et al. (2009 [triangle]); Perez et al. (2001 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o902-scheme1.jpg

Experimental

Crystal data

  • C14H18N2O2S2
  • M r = 310.42
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o902-efi1.jpg
  • a = 6.9134 (4) Å
  • b = 17.6934 (11) Å
  • c = 24.9073 (15) Å
  • V = 3046.7 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 296 K
  • 0.26 × 0.18 × 0.16 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.922, T max = 0.942
  • 18229 measured reflections
  • 3957 independent reflections
  • 2120 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.132
  • S = 1.03
  • 3957 reflections
  • 186 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011027/hk2650sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011027/hk2650Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

supplementary crystallographic information

Comment

We have recently reported the crystal structure of 3-benzyl-5-butyl-1,3,5 -thiadiazinane-2-thione, (II) (Arfan et al., 2009) and 5-carboxyethyl-3 -(2'-furfurylmethyl) tetrahydro-2H-1,3,5-thiadiazine-2-thione, (III) (Perez et al., 2001) has also been published. As part of our ongoing studies, we report herein the crystal structure of the title compound, (I).

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar, while ring B (S1/N1/N2/C10-C12) adopts an envelope conformation with atom N2 displaced by -0.647 (3) Å from the plane of the other ring atoms. The planar carboxylic acid moiety is oriented with respect to ring A at a dihedral angle of 34.26 (3)°.

In the crystal structure, weak intermolecular O-H···S interactions (Table 1) link the molecules into chains along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, carbon disulfide was slowly added into a mixture of 2,4,6-trimethylaniline (2.18 ml, 20 mmol) and potassium hydroxide (20%, 20 mmol) in water (30 ml) with stirring. Formaldehyde (37%) was added dropwise to the mixture after 4 h, and was stirred for a further 1 h. Then, the mixture was filtered and the filtrate was added in a suspension of glycine (1.5 ml, 20 mmol) prepared in phosphate buffer solution (20 ml, pH = 7.8), and stirred for a further 1 h. The reaction mixture was filtered and extracted with dichloromethane. The aqueous solution was acidified using HCl and the precipitates formed were filtered and washed with water. The residues were recrystallized in ethanol by slow evaporation (yield; 75%, m. p. 421-423 K).

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C14H18N2O2S2F(000) = 1312
Mr = 310.42Dx = 1.354 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3957 reflections
a = 6.9134 (4) Åθ = 2.4–28.8°
b = 17.6934 (11) ŵ = 0.35 mm1
c = 24.9073 (15) ÅT = 296 K
V = 3046.7 (3) Å3Prism, colorless
Z = 80.26 × 0.18 × 0.16 mm

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer3957 independent reflections
Radiation source: fine-focus sealed tube2120 reflections with I > 2σ(I)
graphiteRint = 0.053
Detector resolution: 7.40 pixels mm-1θmax = 28.8°, θmin = 2.4°
ω scansh = −9→6
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −24→21
Tmin = 0.922, Tmax = 0.942l = −32→33
18229 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0418P)2 + 2.0698P] where P = (Fo2 + 2Fc2)/3
3957 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.05204 (10)0.04895 (4)0.06455 (3)0.0462 (3)
S2−0.05342 (10)0.17988 (4)0.12532 (3)0.0502 (3)
O10.4812 (3)−0.14565 (11)0.15003 (8)0.0521 (7)
O20.5343 (4)−0.12709 (11)0.06276 (9)0.0639 (9)
N10.3157 (3)0.14751 (11)0.10199 (8)0.0342 (7)
N20.4407 (3)0.02387 (12)0.07081 (9)0.0409 (8)
C10.3789 (4)0.21613 (14)0.12872 (11)0.0355 (8)
C20.4250 (4)0.27902 (14)0.09806 (11)0.0382 (9)
C30.4943 (4)0.34268 (15)0.12500 (13)0.0465 (10)
C40.5158 (4)0.34412 (16)0.18049 (13)0.0494 (10)
C50.4705 (4)0.27966 (16)0.20908 (13)0.0508 (11)
C60.4040 (4)0.21442 (15)0.18430 (12)0.0423 (9)
C70.3984 (5)0.28082 (17)0.03821 (12)0.0554 (11)
C80.5854 (5)0.41477 (18)0.20860 (15)0.0693 (14)
C90.3599 (5)0.14439 (18)0.21674 (12)0.0617 (11)
C100.1280 (4)0.13078 (13)0.09810 (10)0.0356 (8)
C110.2787 (4)0.01152 (15)0.03629 (12)0.0455 (10)
C120.4777 (4)0.10269 (14)0.07749 (13)0.0451 (10)
C130.4446 (4)−0.02219 (15)0.11916 (11)0.0465 (10)
C140.4921 (4)−0.10347 (15)0.10630 (13)0.0444 (10)
H10.49414−0.190270.141890.0625*
H30.527120.385400.105240.0556*
H50.484960.279990.246200.0610*
H7A0.435670.329520.024730.0833*
H7B0.477510.242530.021980.0833*
H7C0.265080.271570.029680.0833*
H8A0.627610.450960.182380.1037*
H8B0.481510.435910.229310.1037*
H8C0.691130.402330.231950.1037*
H9A0.357790.156970.254230.0926*
H9B0.235990.124720.206340.0926*
H9C0.457710.106990.210280.0926*
H11A0.303050.035560.001950.0545*
H11B0.26428−0.042300.030020.0545*
H12A0.591620.108500.099850.0542*
H12B0.507550.124130.042610.0542*
H13A0.54067−0.002230.143760.0558*
H13B0.31956−0.019760.136730.0558*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0368 (4)0.0420 (4)0.0599 (5)−0.0050 (3)−0.0129 (4)−0.0075 (3)
S20.0299 (4)0.0516 (4)0.0691 (5)−0.0026 (3)0.0024 (4)−0.0111 (4)
O10.0600 (14)0.0462 (11)0.0501 (13)0.0040 (10)−0.0039 (10)−0.0002 (10)
O20.0921 (18)0.0482 (12)0.0515 (14)0.0146 (12)0.0067 (12)−0.0035 (10)
N10.0269 (12)0.0358 (11)0.0400 (12)−0.0034 (9)−0.0015 (10)−0.0034 (10)
N20.0376 (13)0.0370 (11)0.0480 (15)−0.0003 (10)−0.0085 (11)−0.0055 (10)
C10.0239 (13)0.0399 (13)0.0428 (16)−0.0024 (11)−0.0024 (12)−0.0071 (12)
C20.0284 (14)0.0413 (14)0.0449 (17)−0.0015 (11)0.0032 (13)−0.0034 (12)
C30.0335 (15)0.0419 (15)0.064 (2)−0.0063 (12)0.0084 (14)−0.0060 (14)
C40.0315 (16)0.0516 (17)0.065 (2)−0.0068 (13)0.0022 (14)−0.0210 (15)
C50.0442 (19)0.0621 (19)0.0462 (18)−0.0059 (15)−0.0053 (14)−0.0130 (15)
C60.0360 (16)0.0484 (15)0.0424 (17)−0.0044 (12)−0.0028 (13)−0.0027 (13)
C70.067 (2)0.0509 (17)0.0483 (19)0.0009 (15)0.0060 (16)0.0016 (14)
C80.057 (2)0.067 (2)0.084 (3)−0.0187 (17)0.0041 (19)−0.0321 (19)
C90.075 (2)0.068 (2)0.0420 (19)−0.0127 (18)−0.0066 (17)0.0043 (16)
C100.0345 (15)0.0360 (13)0.0364 (15)−0.0026 (11)−0.0045 (12)0.0027 (11)
C110.0473 (18)0.0419 (15)0.0472 (18)0.0015 (13)−0.0078 (14)−0.0055 (13)
C120.0338 (16)0.0385 (14)0.063 (2)0.0005 (12)0.0006 (14)−0.0089 (13)
C130.0435 (17)0.0489 (15)0.0472 (18)0.0094 (14)−0.0111 (14)−0.0064 (13)
C140.0398 (17)0.0446 (15)0.0488 (19)0.0032 (12)−0.0093 (14)−0.0020 (14)

Geometric parameters (Å, °)

S1—C101.752 (2)C6—C91.510 (4)
S1—C111.841 (3)C13—C141.510 (4)
S2—C101.670 (3)C3—H30.9300
O1—C141.323 (4)C5—H50.9300
O2—C141.198 (4)C7—H7A0.9600
O1—H10.8200C7—H7B0.9600
N1—C11.452 (3)C7—H7C0.9600
N1—C121.502 (3)C8—H8A0.9600
N1—C101.335 (3)C8—H8B0.9600
N2—C121.428 (3)C8—H8C0.9600
N2—C131.454 (3)C9—H9A0.9600
N2—C111.429 (4)C9—H9B0.9600
C1—C61.396 (4)C9—H9C0.9600
C1—C21.387 (4)C11—H11A0.9700
C2—C31.396 (4)C11—H11B0.9700
C2—C71.502 (4)C12—H12A0.9700
C3—C41.390 (5)C12—H12B0.9700
C4—C51.381 (4)C13—H13A0.9700
C4—C81.511 (4)C13—H13B0.9700
C5—C61.387 (4)
S1···C11i3.561 (3)C14···C3iv3.526 (4)
S1···S1i3.7226 (11)C14···C2iv3.561 (4)
S2···O1ii3.187 (2)C1···H1ii3.0800
S2···C63.540 (3)C7···H12B2.8800
S1···H7Aiii3.2000C10···H9B2.8000
S1···H3iv3.1100C12···H7B2.8300
S1···H13B2.8500C14···H11B2.6900
S2···H12Av2.8300H1···S2iv2.3700
S2···H9Avi3.0900H1···C1iv3.0800
S2···H9B3.0000H3···H7A2.3200
S2···H1ii2.3700H3···H8A2.3500
O1···C3iv3.352 (3)H3···S1ii3.1100
O1···S2iv3.187 (2)H5···H9A2.3600
O1···C2iv3.367 (3)H5···O1ix2.9100
O2···N22.756 (3)H7A···H32.3200
O2···C113.094 (4)H7A···S1x3.2000
O1···H5vii2.9100H7B···N12.8400
O2···H11B2.5300H7B···C122.8300
O2···H11Aviii2.5500H7B···H12B2.1700
O2···H12Bviii2.6400H7B···H7Cx2.3800
O2···H7Civ2.8600H7C···N12.8600
N2···O22.756 (3)H7C···H7Biii2.3800
N2···C11viii3.357 (4)H7C···O2ii2.8600
N1···H9B2.6900H8A···H32.3500
N1···H7B2.8400H8B···H8Cvi2.3100
N1···H7C2.8600H8C···H8Bxi2.3100
N2···H11Aviii2.7400H9A···H52.3600
C2···O1ii3.367 (3)H9A···S2xi3.0900
C2···C14ii3.561 (4)H9B···S23.0000
C3···O1ii3.352 (3)H9B···N12.6900
C3···C14ii3.526 (4)H9B···C102.8000
C6···S23.540 (3)H11A···H12B2.3400
C7···C123.345 (4)H11A···O2viii2.5500
C7···C103.573 (4)H11A···N2viii2.7400
C9···C103.371 (4)H11B···O22.5300
C10···C73.573 (4)H11B···C142.6900
C10···C93.371 (4)H12A···S2xii2.8300
C10···C133.520 (4)H12A···H13A2.2700
C11···S1i3.561 (3)H12B···C72.8800
C11···O23.094 (4)H12B···H7B2.1700
C11···N2viii3.357 (4)H12B···H11A2.3400
C11···C11viii3.577 (4)H12B···O2viii2.6400
C12···C73.345 (4)H13A···H12A2.2700
C13···C103.520 (4)H13B···S12.8500
C10—S1—C11102.97 (13)C6—C5—H5119.00
C14—O1—H1109.00C2—C7—H7A109.00
C1—N1—C12113.8 (2)C2—C7—H7B109.00
C10—N1—C12125.4 (2)C2—C7—H7C109.00
C1—N1—C10120.8 (2)H7A—C7—H7B109.00
C11—N2—C12111.1 (2)H7A—C7—H7C109.00
C12—N2—C13116.6 (2)H7B—C7—H7C109.00
C11—N2—C13115.3 (2)C4—C8—H8A109.00
N1—C1—C2119.2 (2)C4—C8—H8B109.00
C2—C1—C6122.4 (2)C4—C8—H8C109.00
N1—C1—C6118.3 (2)H8A—C8—H8B109.00
C1—C2—C3117.5 (3)H8A—C8—H8C109.00
C1—C2—C7122.4 (2)H8B—C8—H8C109.00
C3—C2—C7120.1 (2)C6—C9—H9A109.00
C2—C3—C4122.0 (3)C6—C9—H9B109.00
C3—C4—C5118.3 (3)C6—C9—H9C109.00
C5—C4—C8121.1 (3)H9A—C9—H9B109.00
C3—C4—C8120.6 (3)H9A—C9—H9C109.00
C4—C5—C6122.2 (3)H9B—C9—H9C109.00
C1—C6—C5117.7 (3)S1—C11—H11A109.00
C1—C6—C9121.6 (2)S1—C11—H11B109.00
C5—C6—C9120.8 (3)N2—C11—H11A109.00
S1—C10—S2113.48 (16)N2—C11—H11B109.00
S1—C10—N1120.62 (19)H11A—C11—H11B108.00
S2—C10—N1125.84 (19)N1—C12—H12A108.00
S1—C11—N2112.5 (2)N1—C12—H12B108.00
N1—C12—N2115.4 (2)N2—C12—H12A108.00
N2—C13—C14111.2 (2)N2—C12—H12B108.00
O1—C14—C13110.5 (2)H12A—C12—H12B107.00
O2—C14—C13125.3 (3)N2—C13—H13A109.00
O1—C14—O2124.2 (2)N2—C13—H13B109.00
C2—C3—H3119.00C14—C13—H13A109.00
C4—C3—H3119.00C14—C13—H13B109.00
C4—C5—H5119.00H13A—C13—H13B108.00
C11—S1—C10—S2176.80 (15)N1—C1—C2—C3−176.9 (2)
C11—S1—C10—N1−5.7 (2)N1—C1—C2—C74.5 (4)
C10—S1—C11—N235.4 (2)C6—C1—C2—C3−1.6 (4)
C10—N1—C1—C2−98.6 (3)C6—C1—C2—C7179.9 (3)
C10—N1—C1—C685.9 (3)N1—C1—C6—C5177.9 (2)
C12—N1—C1—C277.9 (3)N1—C1—C6—C9−2.3 (4)
C12—N1—C1—C6−97.7 (3)C2—C1—C6—C52.6 (4)
C1—N1—C10—S1178.62 (18)C2—C1—C6—C9−177.7 (3)
C1—N1—C10—S2−4.3 (3)C1—C2—C3—C4−0.5 (4)
C12—N1—C10—S12.6 (3)C7—C2—C3—C4178.1 (3)
C12—N1—C10—S2179.7 (2)C2—C3—C4—C51.4 (4)
C1—N1—C12—N2155.3 (2)C2—C3—C4—C8−178.1 (3)
C10—N1—C12—N2−28.4 (4)C3—C4—C5—C6−0.3 (4)
C12—N2—C11—S1−63.8 (3)C8—C4—C5—C6179.2 (3)
C13—N2—C11—S171.7 (2)C4—C5—C6—C1−1.6 (4)
C11—N2—C12—N160.6 (3)C4—C5—C6—C9178.7 (3)
C13—N2—C12—N1−74.3 (3)N2—C13—C14—O1−175.4 (2)
C11—N2—C13—C1472.2 (3)N2—C13—C14—O24.7 (4)
C12—N2—C13—C14−154.8 (2)

Symmetry codes: (i) −x, −y, −z; (ii) −x+1/2, y+1/2, z; (iii) x−1/2, −y+1/2, −z; (iv) −x+1/2, y−1/2, z; (v) x−1, y, z; (vi) x−1/2, y, −z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) −x+1, −y, −z; (ix) −x+1, y+1/2, −z+1/2; (x) x+1/2, −y+1/2, −z; (xi) x+1/2, y, −z+1/2; (xii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···S2iv0.822.373.187 (2)174

Symmetry codes: (iv) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2650).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arfan, M., Tahir, M. N., Shah, M. I. A. & Iqbal, M. S. (2009). Acta Cryst. E65, o468. [PMC free article] [PubMed]
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Perez, R., Suarez, M., Ochoa, E., Rodriguez, H., Martin, N., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & Ranter, C. De. (2001). Tetrahedron, 57, 7361–7367.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography