PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o913–o914.
Published online 2009 March 28. doi:  10.1107/S1600536809010769
PMCID: PMC2968983

2-[1-(2-Hydroxy-3-methoxybenzyl)-1H-benzimidazol-2-yl]-6-methoxyphenol monohydrate

Abstract

The asymmetric unit of the title compound, C22H20N2O4·H2O, comprises a substituted benzimidazole molecule and a water mol­ecule of crystallization. The dihedral angles between the benzimidazole ring system and the two outer benzene rings are 16.54 (4) and 86.13 (4)°. The dihedral angle between the two hydr­oxy-substituted benzene rings is 82.20 (5)°. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds, involving the hydr­oxy groups and water mol­ecules, form R 4 4(8) ring motifs, and link symmetry-related mol­ecules into extended chains along the c axis. The crystal structure is further stabilized by weak inter­molecular C—H(...)O hydrogen bonds, weak C—H(...)π and π–π stacking [centroid–centroid = 3.6495 (6)–3.7130 (6) Å] inter­actions. Intra­molecular O—H(...)O and O—H(...)N inter­actions are also present.

Related literature

For hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]). For the synthesis and bioactivity of benzimidazoles see, for example: Soto et al. (2006 [triangle]); Vazquez et al. (2006 [triangle]); Latif et al. (1983 [triangle]). For related structures, see: Elerman & Kabak (1997 [triangle]); Liu et al. (2006 [triangle]); Al-Douh et al. (2006 [triangle], 2007 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o913-scheme1.jpg

Experimental

Crystal data

  • C22H20N2O4·H2O
  • M r = 394.42
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o913-efi1.jpg
  • a = 7.5076 (1) Å
  • b = 9.8557 (1) Å
  • c = 13.2240 (2) Å
  • α = 106.306 (1)°
  • β = 97.135 (1)°
  • γ = 97.993 (1)°
  • V = 916.18 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.48 × 0.28 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.952, T max = 0.990
  • 33715 measured reflections
  • 8009 independent reflections
  • 6304 reflections with I > 2˘I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.133
  • S = 1.03
  • 8009 reflections
  • 274 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010769/lh2793sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010769/lh2793Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Malaysian Government and Universiti Sains Malaysia (USM) for an FRGS grant [304/PKIMIA/638122] to conduct this work. MHA-D thanks the Yemeni Government and Hadhramout University of Science and Technology (HUST) for financial scholarship support. HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Many benzimidazoles are pharmaceutical agents and are used widely in biological system applications which enable important synthetic strategies in drug discovery. Phenolic and anisolic benzimidazole derivatives have been synthesized and evaluated for vasodilator and antihypertensive activity (Soto et al., 2006), while other alkyloxyaryl benzimidazole derivatives have been tested for the spasmolytic activity (Vazquez et al., 2006). Latif et al. have developed the reactions of some phenolic aldehydes with o- phenylenediamine in great details and managed to isolate the title compound (Latif et al., 1983). In view of the above, we have obtained the title compound (I), derived from benzimidazole and a bis-Schiff base compound and have determined its crystsal structure herein.

The bond lengths and angles in (I) are consistent with those common to related reported structures (Elerman & Kabak, 1997; Liu et al., 2006). The molecular structure of (I) is shown in Fig. 1. Intramolecular O—H···O and O—H···N hydrogen bonds generate five and six membered rings with S(5) and S(6) ring motifs respectively (Bernstein et al., 1995). Intermolecular O—H···O hydrogen bonds, involving one of the hydroxy groups and one of the water molecules link neighbouring molecules into chains with R44(8) ring motifs (Bernstein et al., 1995). The dihedral angles between the benzimidazole ring system and the two outer benzene rings are 16.54 (4) and 86.13 (4)°. The dihedral angle between the two hydroxy substituted benzene rings is 82.20 (5)°. In the crystal structure the molecules are linked together by four-membered O—H···O—H···O—H interactions into 1-D extended chains along the c axis. The crystal structure is further stabilized by intermolecular C—H···O hydrogen bonds, weak intermolecular C—H···π (Table 1; Cg1 is the centroids of the C15–C20 benzene ring), and π-π interactions [Cg2···Cg2vii = 3.6495 (6) Å; Cg3 ···Cg4vii = 3.7130 (6) Å; Cg2, Cg3 and Cg4 are the centroids of the N1/C7/N2/C8/C13, C1–C6 and C8–C13 rings].

Experimental

The synthetic method has been described earlier (Al-Douh et al., 2006, 2007), while the single crystals suitable for X-ray diffraction were obtained by evaporation of a methanol solution of (I) at 353 K.

Refinement

H atoms of the hydroxy groups were positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.82 Å. The water H-atoms were located from the difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically and refined with a riding model approximation with C—H = 0.95–0.98 and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular H bonds are drawn as a dashed line.
Fig. 2.
Part of the crystal structure of the title compound, viewed along the a-axis showing 1-D extended chains along the c-axis. Intermolecular interactions are drawn as dashed lines.

Crystal data

C22H20N2O4·H2OZ = 2
Mr = 394.42F(000) = 416
Triclinic, P1Dx = 1.430 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5076 (1) ÅCell parameters from 9908 reflections
b = 9.8557 (1) Åθ = 2.5–33.4°
c = 13.2240 (2) ŵ = 0.10 mm1
α = 106.306 (1)°T = 100 K
β = 97.135 (1)°Plate, colourless
γ = 97.993 (1)°0.48 × 0.28 × 0.10 mm
V = 916.18 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer8009 independent reflections
Radiation source: fine-focus sealed tube6304 reflections with I > 2˘I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 35.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −10→12
Tmin = 0.952, Tmax = 0.990k = −15→15
33715 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0658P)2 + 0.2927P] where P = (Fo2 + 2Fc2)/3
8009 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.70651 (10)0.86574 (8)−0.22860 (6)0.01748 (14)
H10.74100.9452−0.18070.026*
O20.57454 (9)0.84985 (8)0.36393 (6)0.01561 (13)
H20.57920.84390.42630.023*
O30.65167 (12)0.60902 (8)−0.35747 (6)0.02243 (16)
O40.83510 (10)0.78670 (9)0.48995 (6)0.01926 (15)
N10.78166 (11)1.04082 (9)−0.04007 (7)0.01479 (14)
N20.68948 (10)0.98309 (9)0.09978 (6)0.01414 (14)
C10.68617 (12)0.75865 (10)−0.18267 (7)0.01435 (16)
C20.65860 (13)0.61781 (11)−0.25179 (8)0.01672 (17)
C30.63781 (14)0.50113 (11)−0.21256 (9)0.01892 (18)
H3A0.61860.4059−0.25980.023*
C40.64553 (14)0.52522 (11)−0.10278 (9)0.01897 (18)
H4A0.63260.4457−0.07530.023*
C50.67176 (13)0.66317 (11)−0.03354 (8)0.01655 (17)
H5A0.67770.67740.04100.020*
C60.68979 (12)0.78324 (10)−0.07211 (7)0.01388 (15)
C70.71903 (12)0.93282 (10)−0.00369 (7)0.01363 (15)
C80.74228 (12)1.13195 (10)0.13166 (8)0.01435 (15)
C90.74225 (13)1.23678 (11)0.22774 (8)0.01755 (17)
H9A0.70341.21260.28720.021*
C100.80202 (14)1.37822 (12)0.23185 (9)0.02025 (18)
H10A0.80381.45290.29580.024*
C110.86028 (14)1.41416 (11)0.14373 (9)0.02055 (19)
H11A0.90111.51220.14980.025*
C120.85915 (13)1.30930 (11)0.04864 (8)0.01792 (17)
H12A0.89821.3335−0.01070.022*
C130.79834 (12)1.16605 (10)0.04318 (8)0.01454 (16)
C140.62110 (12)0.90630 (11)0.17087 (7)0.01496 (16)
H14A0.53630.81690.12750.018*
H14B0.55150.96670.21830.018*
C150.77308 (12)0.86831 (10)0.23893 (7)0.01369 (15)
C160.74231 (12)0.84165 (10)0.33383 (7)0.01303 (15)
C170.88347 (12)0.81141 (10)0.39986 (7)0.01459 (16)
C181.05599 (13)0.81031 (11)0.37185 (8)0.01720 (17)
H18A1.15240.79250.41730.021*
C191.08576 (13)0.83566 (11)0.27609 (8)0.01798 (17)
H19A1.20260.83360.25580.022*
C200.94569 (12)0.86386 (11)0.21028 (8)0.01622 (17)
H20A0.96750.88030.14510.019*
C210.6815 (2)0.47733 (14)−0.42586 (10)0.0353 (3)
H21A0.69580.4884−0.49590.053*
H21B0.57680.4012−0.43440.053*
H21C0.79230.4517−0.39440.053*
C220.97989 (14)0.78394 (12)0.57027 (8)0.02013 (19)
H22A0.93130.78070.63520.030*
H22B1.07330.87060.58660.030*
H22C1.03420.69860.54410.030*
O1W0.50926 (11)0.14161 (9)0.43879 (6)0.02107 (15)
H2W10.433 (3)0.158 (2)0.3932 (17)0.055 (6)*
H1W10.515 (3)0.052 (2)0.4097 (15)0.043 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0253 (3)0.0151 (3)0.0131 (3)0.0034 (3)0.0034 (2)0.0061 (2)
O20.0147 (3)0.0218 (3)0.0125 (3)0.0045 (2)0.0046 (2)0.0073 (3)
O30.0351 (4)0.0180 (3)0.0133 (3)0.0056 (3)0.0046 (3)0.0028 (3)
O40.0175 (3)0.0300 (4)0.0152 (3)0.0056 (3)0.0030 (2)0.0138 (3)
N10.0164 (3)0.0157 (4)0.0143 (3)0.0041 (3)0.0039 (3)0.0066 (3)
N20.0152 (3)0.0165 (4)0.0123 (3)0.0033 (3)0.0033 (2)0.0063 (3)
C10.0154 (3)0.0157 (4)0.0138 (4)0.0040 (3)0.0030 (3)0.0066 (3)
C20.0196 (4)0.0177 (4)0.0135 (4)0.0047 (3)0.0033 (3)0.0048 (3)
C30.0217 (4)0.0151 (4)0.0195 (5)0.0035 (3)0.0029 (3)0.0046 (3)
C40.0207 (4)0.0164 (4)0.0219 (5)0.0033 (3)0.0032 (3)0.0095 (4)
C50.0178 (4)0.0183 (4)0.0158 (4)0.0036 (3)0.0033 (3)0.0085 (3)
C60.0138 (3)0.0156 (4)0.0134 (4)0.0035 (3)0.0025 (3)0.0058 (3)
C70.0139 (3)0.0161 (4)0.0121 (4)0.0038 (3)0.0024 (3)0.0056 (3)
C80.0138 (3)0.0169 (4)0.0134 (4)0.0039 (3)0.0018 (3)0.0058 (3)
C90.0168 (4)0.0212 (4)0.0139 (4)0.0047 (3)0.0017 (3)0.0039 (3)
C100.0207 (4)0.0197 (5)0.0184 (4)0.0051 (3)0.0018 (3)0.0025 (4)
C110.0217 (4)0.0168 (4)0.0226 (5)0.0042 (3)0.0024 (3)0.0053 (4)
C120.0189 (4)0.0170 (4)0.0196 (4)0.0040 (3)0.0039 (3)0.0078 (3)
C130.0145 (3)0.0165 (4)0.0139 (4)0.0039 (3)0.0026 (3)0.0062 (3)
C140.0142 (3)0.0203 (4)0.0131 (4)0.0037 (3)0.0035 (3)0.0086 (3)
C150.0139 (3)0.0165 (4)0.0117 (4)0.0034 (3)0.0026 (3)0.0054 (3)
C160.0129 (3)0.0150 (4)0.0115 (4)0.0026 (3)0.0026 (3)0.0043 (3)
C170.0158 (3)0.0165 (4)0.0128 (4)0.0030 (3)0.0021 (3)0.0067 (3)
C180.0153 (4)0.0206 (4)0.0182 (4)0.0048 (3)0.0022 (3)0.0095 (4)
C190.0144 (4)0.0230 (5)0.0195 (4)0.0053 (3)0.0044 (3)0.0097 (4)
C200.0148 (3)0.0214 (4)0.0148 (4)0.0045 (3)0.0045 (3)0.0078 (3)
C210.0633 (9)0.0230 (6)0.0184 (5)0.0126 (6)0.0104 (5)0.0008 (4)
C220.0206 (4)0.0265 (5)0.0146 (4)0.0048 (3)−0.0004 (3)0.0095 (4)
O1W0.0267 (4)0.0235 (4)0.0158 (3)0.0093 (3)0.0049 (3)0.0076 (3)

Geometric parameters (Å, °)

O1—C11.3581 (11)C10—C111.4107 (16)
O1—H10.8400C10—H10A0.9500
O2—C161.3734 (11)C11—C121.3837 (15)
O2—H20.8400C11—H11A0.9500
O3—C21.3697 (12)C12—C131.4008 (14)
O3—C211.4229 (14)C12—H12A0.9500
O4—C171.3624 (11)C14—C151.5183 (12)
O4—C221.4312 (12)C14—H14A0.9900
N1—C71.3379 (12)C14—H14B0.9900
N1—C131.3824 (13)C15—C161.3920 (13)
N2—C71.3757 (12)C15—C201.3976 (12)
N2—C81.3917 (12)C16—C171.4066 (12)
N2—C141.4599 (12)C17—C181.3913 (13)
C1—C21.4021 (14)C18—C191.3959 (14)
C1—C61.4094 (13)C18—H18A0.9500
C2—C31.3860 (14)C19—C201.3893 (13)
C3—C41.3961 (15)C19—H19A0.9500
C3—H3A0.9500C20—H20A0.9500
C4—C51.3810 (15)C21—H21A0.9800
C4—H4A0.9500C21—H21B0.9800
C5—C61.4108 (13)C21—H21C0.9800
C5—H5A0.9500C22—H22A0.9800
C6—C71.4669 (13)C22—H22B0.9800
C8—C91.3945 (14)C22—H22C0.9800
C8—C131.4010 (13)O1W—H2W10.84 (2)
C9—C101.3874 (15)O1W—H1W10.87 (2)
C9—H9A0.9500
C1—O1—H1109.5C11—C12—H12A121.2
C16—O2—H2109.5C13—C12—H12A121.2
C2—O3—C21116.18 (9)N1—C13—C12130.25 (9)
C17—O4—C22116.88 (8)N1—C13—C8109.19 (8)
C7—N1—C13106.48 (8)C12—C13—C8120.56 (9)
C7—N2—C8106.87 (8)N2—C14—C15112.59 (7)
C7—N2—C14130.73 (8)N2—C14—H14A109.1
C8—N2—C14122.38 (8)C15—C14—H14A109.1
O1—C1—C2116.37 (8)N2—C14—H14B109.1
O1—C1—C6123.45 (9)C15—C14—H14B109.1
C2—C1—C6120.18 (8)H14A—C14—H14B107.8
O3—C2—C3125.03 (9)C16—C15—C20118.99 (8)
O3—C2—C1114.20 (8)C16—C15—C14119.49 (8)
C3—C2—C1120.76 (9)C20—C15—C14121.49 (8)
C2—C3—C4119.20 (9)O2—C16—C15119.26 (8)
C2—C3—H3A120.4O2—C16—C17120.41 (8)
C4—C3—H3A120.4C15—C16—C17120.29 (8)
C5—C4—C3120.85 (9)O4—C17—C18125.31 (8)
C5—C4—H4A119.6O4—C17—C16114.37 (8)
C3—C4—H4A119.6C18—C17—C16120.31 (8)
C4—C5—C6120.82 (9)C17—C18—C19119.19 (8)
C4—C5—H5A119.6C17—C18—H18A120.4
C6—C5—H5A119.6C19—C18—H18A120.4
C1—C6—C5118.16 (9)C20—C19—C18120.45 (9)
C1—C6—C7117.77 (8)C20—C19—H19A119.8
C5—C6—C7124.03 (8)C18—C19—H19A119.8
N1—C7—N2111.35 (8)C19—C20—C15120.73 (9)
N1—C7—C6120.54 (8)C19—C20—H20A119.6
N2—C7—C6128.11 (8)C15—C20—H20A119.6
N2—C8—C9131.51 (9)O3—C21—H21A109.5
N2—C8—C13106.08 (8)O3—C21—H21B109.5
C9—C8—C13122.40 (9)H21A—C21—H21B109.5
C10—C9—C8116.42 (9)O3—C21—H21C109.5
C10—C9—H9A121.8H21A—C21—H21C109.5
C8—C9—H9A121.8H21B—C21—H21C109.5
C9—C10—C11121.84 (10)O4—C22—H22A109.5
C9—C10—H10A119.1O4—C22—H22B109.5
C11—C10—H10A119.1H22A—C22—H22B109.5
C12—C11—C10121.25 (10)O4—C22—H22C109.5
C12—C11—H11A119.4H22A—C22—H22C109.5
C10—C11—H11A119.4H22B—C22—H22C109.5
C11—C12—C13117.52 (9)H2W1—O1W—H1W1103.0 (18)
C21—O3—C2—C3−20.13 (15)C8—C9—C10—C11−0.19 (14)
C21—O3—C2—C1160.96 (10)C9—C10—C11—C120.43 (16)
O1—C1—C2—O3−1.55 (12)C10—C11—C12—C13−0.13 (15)
C6—C1—C2—O3177.80 (8)C7—N1—C13—C12179.37 (10)
O1—C1—C2—C3179.48 (9)C7—N1—C13—C8−0.59 (10)
C6—C1—C2—C3−1.16 (14)C11—C12—C13—N1179.66 (9)
O3—C2—C3—C4−179.16 (9)C11—C12—C13—C8−0.39 (14)
C1—C2—C3—C4−0.31 (15)N2—C8—C13—N1−0.56 (10)
C2—C3—C4—C50.61 (15)C9—C8—C13—N1−179.40 (8)
C3—C4—C5—C60.58 (14)N2—C8—C13—C12179.47 (8)
O1—C1—C6—C5−178.40 (8)C9—C8—C13—C120.64 (14)
C2—C1—C6—C52.28 (13)C7—N2—C14—C1591.13 (11)
O1—C1—C6—C7−0.65 (13)C8—N2—C14—C15−87.41 (10)
C2—C1—C6—C7−179.96 (8)N2—C14—C15—C16157.87 (9)
C4—C5—C6—C1−2.01 (13)N2—C14—C15—C20−20.07 (13)
C4—C5—C6—C7−179.61 (9)C20—C15—C16—O2178.18 (9)
C13—N1—C7—N21.57 (10)C14—C15—C16—O20.19 (13)
C13—N1—C7—C6−178.56 (8)C20—C15—C16—C170.30 (14)
C8—N2—C7—N1−1.94 (10)C14—C15—C16—C17−177.69 (9)
C14—N2—C7—N1179.36 (8)C22—O4—C17—C1811.29 (15)
C8—N2—C7—C6178.21 (8)C22—O4—C17—C16−167.85 (9)
C14—N2—C7—C6−0.50 (15)O2—C16—C17—O42.44 (13)
C1—C6—C7—N1−15.16 (12)C15—C16—C17—O4−179.70 (9)
C5—C6—C7—N1162.45 (9)O2—C16—C17—C18−176.74 (9)
C1—C6—C7—N2164.69 (9)C15—C16—C17—C181.11 (15)
C5—C6—C7—N2−17.71 (14)O4—C17—C18—C19179.16 (10)
C7—N2—C8—C9−179.84 (9)C16—C17—C18—C19−1.75 (15)
C14—N2—C8—C9−1.00 (15)C17—C18—C19—C200.99 (16)
C7—N2—C8—C131.47 (9)C18—C19—C20—C150.42 (16)
C14—N2—C8—C13−179.69 (8)C16—C15—C20—C19−1.06 (15)
N2—C8—C9—C10−178.84 (9)C14—C15—C20—C19176.89 (9)
C13—C8—C9—C10−0.33 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.802.5447 (12)147
O1W—H2W1···O1i0.84 (2)2.23 (2)3.0151 (11)155 (2)
O2—H2···O40.842.212.6650 (11)114
O2—H2···O1Wii0.841.952.7401 (11)155
O1W—H1W1···O2iii0.87 (2)2.04 (2)2.8987 (12)168.5 (19)
C21—H21B···O1Wiv0.982.583.2762 (16)128
C22—H22A···O3v0.982.543.2071 (14)126
C22—H22B···Cg1vi0.982.803.5497 (13)133

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) x, y, z−1; (v) x, y, z+1; (vi) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2793).

References

  • Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o3954–o3956.
  • Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o3570–o3571.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Elerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372–374.
  • Latif, N., Mishriky, N. & F. M. Assad (1983). Recl Trav. Chim Pays-Bas, 102, 73–77.
  • Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908–o5909.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soto, S. E., Molina, R. V., Crespo, F. A., Galicia, J. V., Diaz, H. M., Piedra, M. T. & Vazquez, G. N. (2006). Life Sci.79, 430–435. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vazquez, G. N., Diaz, H. M., Crespo, F. A., Rivera, I. L., Molina, R. V., Muniz, O. M. & Soto, S. E. (2006). Bioorg. Med. Chem. Lett.16, 4169–4173. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography