PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o785.
Published online 2009 March 19. doi:  10.1107/S160053680900912X
PMCID: PMC2968979

Bis[diamino­(ethoxy­carbonyl­amino)­methyl­ium] sulfate

Abstract

In the mol­ecule of the title compound, 2C4H10N3O2 +·SO4 , the cations are planar (r.m.s. deviations = 0.0144 and 0.0236 Å) and oriented at a dihedral angle of 62.30 (4)°. Intra­molecular N—H(...)O hydrogen bonds result in the formation of two planar six-membered rings. The cations are linked to the sulfate ion through inter­molecular C—H(...)O and N—H(...)O hydrogen bonds, forming an R 2 2(8) ring motif. In the crystal structure, inter­molecular N—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Brauer & Kottsieper (2003 [triangle]); Curtis & Pasternak (1955 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o785-scheme1.jpg

Experimental

Crystal data

  • 2C4H10N3O2 +·SO4 2−
  • M r = 360.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o785-efi1.jpg
  • a = 9.3021 (12) Å
  • b = 11.0081 (11) Å
  • c = 17.1063 (13) Å
  • β = 100.980 (3)°
  • V = 1719.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 296 K
  • 0.24 × 0.18 × 0.15 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.946, T max = 0.967
  • 3481 measured reflections
  • 3481 independent reflections
  • 2124 reflections with I > 2σ(I)
  • R int = 0.025
  • 3 standard reflections frequency: 120 min intensity decay: 1.7%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.108
  • S = 1.03
  • 3481 reflections
  • 233 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900912X/hk2641sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900912X/hk2641Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the preparative efforts of the late Muhammad Asghar, student of Dr Christy Munir at Quaid-i-Azam University, Islamabad, Pakistan.

supplementary crystallographic information

Comment

As part of our ongoing studies, we report herein the crystal structure of the title compound, (I).

The crystal structures of 1-carbamoylguanidinium methylphosphonate monohydrate, (II) (Brauer & Kottsieper, 2003) and methylguanidinium nitrate, (III) (Curtis & Pasternak, 1955) have been reported. In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles of the diamino(ethoxycarbonylamino)methylium (DEAM) moieties are within normal ranges. DEAM moieties (N1–N3/O5/O6/C1–C4) and (N4–N6/O7/O8/C5–C8) are planar with maximum deviations of 0.043 (2) and -0.322 (3) Å for N2 and N4 atoms, respectively, in which they are oriented at a dihedral angle of 62.30 (4)°. The intramolecular N—H···O hydrogen bonds result in the formations of two planar six-membered rings: A (O5/N2/N3/C1/C2/H2A) and B (O7/N5/N6/C5/C6/H5A). The dihedral angle between them is A/B = 60.38 (3)°. The DEAM moieties are linked to the SO4 ion through the intramolecular C—H···O and N—H···O hydrogen bonds (Table 1), forming a R22(8) ring motif (Bernstein et al., 1995).

In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 1-cyanoguanidine (2.1 g, 0.025 mol) was dissolved in water (50 ml), and then a few drops of H2SO4 were added. The resulting mixture was refluxed for 2–3 h, and cooled to room temperature. The excess of ethanol was added, and then refluxed for 2–3 h. It was filtered through alumina. The filtrate was concentrated under reduced pressure and kept for crystallization. Recrystallization was carried out from ethanol/hexane (9:1) mixture in 5 d.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

2C4H10N3O2+·SO42F(000) = 760
Mr = 360.36Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.3021 (12) Åθ = 10.0–18.2°
b = 11.0081 (11) ŵ = 0.24 mm1
c = 17.1063 (13) ÅT = 296 K
β = 100.980 (3)°Prism, colourless
V = 1719.6 (3) Å30.24 × 0.18 × 0.15 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer2124 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
graphiteθmax = 26.3°, θmin = 2.2°
ω/2θ scansh = 0→11
Absorption correction: ψ scan (North et al., 1968)k = 0→13
Tmin = 0.946, Tmax = 0.967l = −21→20
3481 measured reflections3 standard reflections every 120 min
3481 independent reflections intensity decay: 1.7%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1093P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3481 reflectionsΔρmax = 0.21 e Å3
233 parametersΔρmin = −0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (9)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.74538 (6)0.22561 (5)0.25630 (4)0.0324 (2)
O10.87642 (18)0.15672 (16)0.29258 (11)0.0494 (6)
O20.78056 (17)0.35534 (15)0.25361 (10)0.0398 (6)
O30.6301 (2)0.20989 (17)0.30259 (11)0.0536 (7)
O40.6925 (2)0.18149 (16)0.17468 (10)0.0492 (7)
O50.43306 (19)0.28294 (17)0.43071 (11)0.0499 (6)
O60.53979 (17)0.45797 (16)0.40549 (11)0.0471 (6)
O70.2706 (2)0.42933 (17)−0.03291 (11)0.0560 (7)
O80.17269 (19)0.60725 (16)−0.00697 (10)0.0460 (6)
N10.0671 (3)0.4461 (2)0.29228 (14)0.0499 (8)
N20.1472 (3)0.2719 (2)0.35872 (15)0.0529 (9)
N30.3058 (2)0.43420 (19)0.35471 (12)0.0422 (7)
N40.5287 (3)0.4909 (2)0.19080 (14)0.0500 (8)
N50.4929 (3)0.3569 (2)0.08613 (14)0.0480 (8)
N60.3530 (2)0.53306 (19)0.08234 (12)0.0426 (7)
C10.1711 (3)0.3811 (2)0.33493 (15)0.0382 (8)
C20.4290 (3)0.3811 (2)0.40006 (15)0.0381 (8)
C30.6785 (3)0.4149 (3)0.45146 (17)0.0532 (10)
C40.7871 (3)0.5128 (3)0.4471 (2)0.0807 (15)
C50.4611 (3)0.4578 (2)0.11953 (15)0.0376 (8)
C60.2642 (3)0.5151 (3)0.00936 (15)0.0387 (8)
C70.0712 (3)0.6005 (3)−0.08355 (15)0.0502 (10)
C8−0.0188 (4)0.7126 (3)−0.0906 (2)0.0738 (12)
H1A0.090 (3)0.518 (3)0.2665 (16)0.0599*
H1B−0.020 (3)0.421 (3)0.2797 (17)0.0599*
H2A0.215 (3)0.234 (3)0.3859 (18)0.0634*
H2B0.059 (3)0.237 (3)0.3410 (17)0.0634*
H3A0.707890.340040.429050.0638*
H3B0.670110.400130.506300.0638*
H4A0.880700.489430.477440.0965*
H4B0.755420.586600.468460.0965*
H4C0.795180.525450.392580.0965*
H4D0.499 (3)0.563 (3)0.2083 (16)0.0600*
H4E0.608 (3)0.445 (3)0.2123 (16)0.0600*
H50.314940.506700.337570.0505*
H5A0.446 (3)0.337 (3)0.0435 (17)0.0576*
H5B0.560 (3)0.303 (3)0.1145 (16)0.0576*
H60.338990.598660.107150.0511*
H7A0.009270.52921−0.085400.0602*
H7B0.124810.59560−0.126840.0602*
H8A−0.093530.70817−0.137710.0883*
H8B0.042500.78183−0.093970.0883*
H8C−0.063540.72035−0.044710.0883*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0322 (3)0.0241 (3)0.0383 (4)−0.0023 (3)−0.0001 (3)0.0012 (3)
O10.0432 (11)0.0334 (10)0.0616 (12)0.0064 (9)−0.0152 (9)−0.0021 (9)
O20.0347 (9)0.0263 (9)0.0566 (11)−0.0042 (7)0.0041 (8)0.0042 (8)
O30.0547 (12)0.0461 (12)0.0647 (12)−0.0088 (10)0.0234 (10)0.0106 (10)
O40.0594 (12)0.0378 (11)0.0425 (11)0.0086 (9)−0.0106 (9)−0.0060 (8)
O50.0432 (10)0.0396 (11)0.0625 (12)−0.0056 (9)−0.0011 (9)0.0182 (10)
O60.0315 (9)0.0409 (11)0.0639 (12)−0.0073 (8)−0.0032 (8)0.0060 (9)
O70.0609 (12)0.0462 (12)0.0535 (12)0.0160 (10)−0.0080 (9)−0.0187 (10)
O80.0512 (11)0.0440 (11)0.0394 (10)0.0178 (9)0.0002 (8)−0.0017 (9)
N10.0359 (12)0.0444 (15)0.0620 (16)−0.0101 (12)−0.0097 (12)0.0166 (12)
N20.0430 (14)0.0397 (15)0.0673 (16)−0.0156 (12)−0.0113 (12)0.0165 (12)
N30.0344 (11)0.0336 (13)0.0537 (13)−0.0085 (10)−0.0036 (10)0.0124 (10)
N40.0540 (15)0.0426 (15)0.0466 (14)0.0216 (12)−0.0074 (11)−0.0097 (12)
N50.0548 (15)0.0379 (14)0.0451 (14)0.0159 (12)−0.0062 (11)−0.0088 (12)
N60.0498 (13)0.0340 (12)0.0408 (12)0.0139 (11)0.0006 (10)−0.0078 (10)
C10.0365 (14)0.0356 (16)0.0394 (14)−0.0084 (12)−0.0004 (11)0.0031 (12)
C20.0367 (14)0.0365 (16)0.0394 (14)−0.0071 (12)0.0033 (11)0.0010 (12)
C30.0355 (15)0.0536 (19)0.0644 (19)−0.0006 (14)−0.0058 (13)−0.0074 (15)
C40.0395 (17)0.093 (3)0.105 (3)−0.0204 (18)0.0024 (17)−0.012 (2)
C50.0391 (14)0.0342 (15)0.0388 (15)0.0066 (12)0.0055 (12)−0.0001 (12)
C60.0396 (14)0.0345 (15)0.0417 (15)0.0051 (12)0.0069 (12)−0.0004 (13)
C70.0500 (16)0.0579 (19)0.0384 (15)0.0098 (15)−0.0022 (12)0.0020 (14)
C80.070 (2)0.075 (2)0.070 (2)0.032 (2)−0.0028 (17)0.0115 (19)

Geometric parameters (Å, °)

S1—O31.460 (2)N5—C51.308 (3)
S1—O41.4716 (18)N6—C51.363 (3)
S1—O11.4690 (19)N6—C61.374 (3)
S1—O21.4678 (17)N4—H4E0.91 (3)
O5—C21.199 (3)N4—H4D0.91 (3)
O6—C31.457 (3)N5—H5B0.93 (3)
O6—C21.323 (3)N5—H5A0.81 (3)
O7—C61.198 (4)N6—H60.8600
O8—C61.320 (4)C3—C41.489 (4)
O8—C71.464 (3)C3—H3A0.9700
N1—C11.308 (4)C3—H3B0.9700
N2—C11.302 (3)C4—H4C0.9600
N3—C21.385 (3)C4—H4B0.9600
N3—C11.366 (3)C4—H4A0.9600
N1—H1A0.95 (3)C7—C81.483 (5)
N1—H1B0.84 (3)C7—H7A0.9700
N2—H2A0.82 (3)C7—H7B0.9700
N2—H2B0.90 (3)C8—H8B0.9600
N3—H50.8600C8—H8C0.9600
N4—C51.312 (3)C8—H8A0.9600
S1···H2Bi3.00 (3)N4···O22.813 (3)
S1···H4E2.77 (3)N5···O42.898 (3)
S1···H5B2.83 (3)N5···O72.730 (3)
S1···H1Aii2.82 (3)N5···C6v3.341 (4)
S1···H4Dii3.04 (3)N5···O5iv3.031 (3)
S1···H5ii2.8900N6···O3vii2.752 (3)
S1···H6ii2.9500C2···O33.320 (3)
S1···H1Bi3.04 (3)C3···O33.368 (4)
O1···N2i2.854 (3)C5···O3vii3.260 (3)
O1···N1ii2.837 (3)C5···O7v3.373 (3)
O2···N1i2.805 (3)C6···N5v3.341 (4)
O2···N42.813 (3)C2···H4Bviii3.1000
O3···C23.320 (3)C2···H2A2.54 (3)
O3···N4ii2.841 (3)C6···H5A2.58 (3)
O3···C5ii3.260 (3)H1A···S1vii2.82 (3)
O3···C33.368 (4)H1A···O1vii1.89 (3)
O3···O53.216 (3)H1A···H52.2100
O3···N6ii2.752 (3)H1A···O4vii2.75 (3)
O4···N52.898 (3)H1B···S1vi3.04 (3)
O4···N3ii2.769 (3)H1B···H2B2.33 (5)
O5···O7iii2.914 (3)H1B···O2vi1.96 (3)
O5···O33.216 (3)H2A···O7iii2.27 (3)
O5···N22.712 (3)H2A···C22.54 (3)
O5···N5iii3.031 (3)H2A···O52.10 (3)
O7···O5iv2.914 (3)H2B···O1vi1.95 (3)
O7···N52.730 (3)H2B···H1B2.33 (5)
O7···N2iv2.975 (3)H2B···S1vi3.00 (3)
O7···C5v3.373 (3)H3A···O52.6400
O1···H2Bi1.95 (3)H3A···O32.5800
O1···H1Aii1.89 (3)H3B···O52.6700
O2···H1Bi1.96 (3)H4A···H4Aix2.2200
O2···H5B2.89 (3)H4B···C2viii3.1000
O2···H4E1.90 (3)H4D···S1vii3.04 (3)
O2···H7Bv2.5500H4D···H62.0900
O3···H3A2.5800H4D···O3vii2.00 (3)
O3···H4Dii2.00 (3)H4E···S12.77 (3)
O3···H6ii1.9500H4E···H5B2.27 (4)
O4···H5B1.97 (3)H4E···O21.90 (3)
O4···H1Aii2.75 (3)H5···H1A2.2100
O4···H5ii1.9400H5···S1vii2.8900
O5···H3A2.6400H5···O4vii1.9400
O5···H3B2.6700H5A···C62.58 (3)
O5···H5Aiii2.32 (3)H5A···O5iv2.32 (3)
O5···H2A2.10 (3)H5A···O72.14 (3)
O7···H7B2.6300H5B···O22.89 (3)
O7···H7A2.6600H5B···O41.97 (3)
O7···H5A2.14 (3)H5B···S12.83 (3)
O7···H2Aiv2.27 (3)H5B···H4E2.27 (4)
N1···O2vi2.805 (3)H6···S1vii2.9500
N1···O1vii2.837 (3)H6···O3vii1.9500
N2···O1vi2.854 (3)H6···H4D2.0900
N2···O52.712 (3)H7A···O72.6600
N2···O7iii2.975 (3)H7B···O72.6300
N3···O4vii2.769 (3)H7B···O2v2.5500
N4···O3vii2.841 (3)
O3—S1—O4109.16 (11)O5—C2—N3125.4 (2)
O1—S1—O3110.23 (11)O6—C3—C4106.1 (2)
O1—S1—O4109.33 (11)H3A—C3—H3B109.00
O1—S1—O2110.09 (10)O6—C3—H3B111.00
O2—S1—O4109.12 (10)O6—C3—H3A111.00
O2—S1—O3108.88 (10)C4—C3—H3A111.00
C2—O6—C3115.3 (2)C4—C3—H3B111.00
C6—O8—C7115.5 (2)C3—C4—H4C109.00
C1—N3—C2125.5 (2)H4A—C4—H4B109.00
C1—N1—H1A120.5 (17)H4A—C4—H4C109.00
C1—N1—H1B122 (2)C3—C4—H4A109.00
H1A—N1—H1B116 (3)C3—C4—H4B109.00
C1—N2—H2A119 (2)H4B—C4—H4C109.00
C1—N2—H2B119 (2)N4—C5—N5122.2 (2)
H2A—N2—H2B122 (3)N4—C5—N6116.4 (2)
C2—N3—H5117.00N5—C5—N6121.3 (2)
C1—N3—H5117.00O7—C6—N6124.9 (3)
C5—N6—C6126.8 (2)O7—C6—O8125.6 (2)
C5—N4—H4E115.4 (18)O8—C6—N6109.5 (2)
H4D—N4—H4E129 (3)O8—C7—C8106.8 (2)
C5—N4—H4D115.2 (17)C8—C7—H7A110.00
C5—N5—H5B120.0 (18)C8—C7—H7B110.00
C5—N5—H5A120 (2)O8—C7—H7A110.00
H5A—N5—H5B120 (3)O8—C7—H7B110.00
C6—N6—H6117.00H7A—C7—H7B109.00
C5—N6—H6117.00H8B—C8—H8C109.00
N2—C1—N3121.4 (2)C7—C8—H8A109.00
N1—C1—N3116.8 (2)C7—C8—H8B109.00
N1—C1—N2121.8 (3)C7—C8—H8C109.00
O6—C2—N3108.65 (19)H8A—C8—H8B109.00
O5—C2—O6125.9 (2)H8A—C8—H8C109.00
C3—O6—C2—O51.9 (4)C2—N3—C1—N20.4 (4)
C3—O6—C2—N3−179.8 (2)C1—N3—C2—O5−3.0 (4)
C2—O6—C3—C4178.0 (2)C1—N3—C2—O6178.6 (2)
C6—O8—C7—C8−179.0 (2)C6—N6—C5—N4−177.4 (3)
C7—O8—C6—O70.5 (4)C6—N6—C5—N51.2 (4)
C7—O8—C6—N6179.8 (2)C5—N6—C6—O7−0.7 (4)
C2—N3—C1—N1179.2 (2)C5—N6—C6—O8180.0 (2)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) x, −y+1/2, z−1/2; (v) −x+1, −y+1, −z; (vi) x−1, y, z; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+1, −y+1, −z+1; (ix) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1vii0.95 (3)1.89 (3)2.837 (3)175 (3)
N1—H1B···O2vi0.84 (3)1.96 (3)2.805 (3)177 (3)
N2—H2A···O50.82 (3)2.10 (3)2.712 (3)131 (3)
N2—H2A···O7iii0.82 (3)2.27 (3)2.975 (3)144 (3)
N2—H2B···O1vi0.90 (3)1.95 (3)2.854 (3)174 (3)
N4—H4D···O3vii0.91 (3)2.00 (3)2.841 (3)153 (2)
N4—H4E···O20.91 (3)1.90 (3)2.813 (3)176 (3)
N3—H5···O4vii0.861.942.769 (3)163
N5—H5A···O70.81 (3)2.14 (3)2.730 (3)130 (3)
N5—H5A···O5iv0.81 (3)2.32 (3)3.031 (3)147 (3)
N5—H5B···O40.93 (3)1.97 (3)2.898 (3)177 (3)
N6—H6···O3vii0.861.952.752 (3)155
C3—H3A···O30.972.583.368 (4)138
C7—H7B···O2v0.972.553.483 (3)162

Symmetry codes: (vii) −x+1, y+1/2, −z+1/2; (vi) x−1, y, z; (iii) x, −y+1/2, z+1/2; (iv) x, −y+1/2, z−1/2; (v) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2641).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brauer, D. J. & Kottsieper, K. W. (2003). Acta Cryst. C59, o244–o246. [PubMed]
  • Curtis, R. M. & Pasternak, R. A. (1955). Acta Cryst.8, 675–681.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography