PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
 
J Clin Invest. 1990 November; 86(5): 1511–1516.
PMCID: PMC296897

Two different point G to A mutations in exon 10 of the porphobilinogen deaminase gene are responsible for acute intermittent porphyria.

Abstract

Two mutations of the porphobilinogen (PBG) deaminase gene resulting in cross-reacting immunological material (CRIM) positive forms of acute intermittent porphyria (AIP) have been identified by in vitro amplification of cDNA and cloning of the amplified products in a bacterial expression vector. Both mutations resulted from G to A transitions in exon 10 of the gene and produced arginine to glutamine substitutions in the abnormal protein. Expression of mutant cDNA in Escherichia coli reveals that one but not the other of these amino acid changes results in a striking decrease of the optimal pH of the mutated enzyme. One or the other of these two mutations accounted for the defect causing AIP in six unrelated patients among the eight patients evaluated with the CRIM positive subtype of this disorder.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Grandchamp B, Nordmann Y. Enzymes of the heme biosynthesis pathway: recent advances in molecular genetics. Semin Hematol. 1988 Oct;25(4):303–311. [PubMed]
  • Llewellyn DH, Elder GH, Kalsheker NA, Marsh OW, Harrison PR, Grandchamp B, Picat C, Nordmann Y, Romeo PH, Goossens M. DNA polymorphism of human porphobilinogen deaminase gene in acute intermittent porphyria. Lancet. 1987 Sep 26;2(8561):706–708. [PubMed]
  • Lee JS, Anvret M, Lindsten J, Lannfelt L, Gellerfors P, Wetterberg L, Floderus Y, Thunell S. DNA polymorphisms within the porphobilinogen deaminase gene in two Swedish families with acute intermittent porphyria. Hum Genet. 1988 Aug;79(4):379–381. [PubMed]
  • Grandchamp B, Picat C, Mignotte V, Wilson JH, Te Velde K, Sandkuyl L, Roméo PH, Goossens M, Nordmann Y. Tissue-specific splicing mutation in acute intermittent porphyria. Proc Natl Acad Sci U S A. 1989 Jan;86(2):661–664. [PubMed]
  • Grandchamp B, Picat C, Kauppinen R, Mignotte V, Peltonen L, Mustajoki P, Roméo PH, Goossens M, Nordmann Y. Molecular analysis of acute intermittent porphyria in a Finnish family with normal erythrocyte porphobilinogen deaminase. Eur J Clin Invest. 1989 Oct;19(5):415–418. [PubMed]
  • Grandchamp B, Picat C, de Rooij F, Beaumont C, Wilson P, Deybach JC, Nordmann Y. A point mutation G----A in exon 12 of the porphobilinogen deaminase gene results in exon skipping and is responsible for acute intermittent porphyria. Nucleic Acids Res. 1989 Aug 25;17(16):6637–6649. [PMC free article] [PubMed]
  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. [PubMed]
  • de Rooij FW, Hamer CM, Wilson JH. Purification of porphobilinogen deaminase from human erythrocytes by fast protein liquid chromatography. Clin Chim Acta. 1987 Jan 15;162(1):61–68. [PubMed]
  • Grandchamp B, De Verneuil H, Beaumont C, Chretien S, Walter O, Nordmann Y. Tissue-specific expression of porphobilinogen deaminase. Two isoenzymes from a single gene. Eur J Biochem. 1987 Jan 2;162(1):105–110. [PubMed]
  • Keohavong P, Thilly WG. Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9253–9257. [PubMed]
  • Ikuta S, Takagi K, Wallace RB, Itakura K. Dissociation kinetics of 19 base paired oligonucleotide-DNA duplexes containing different single mismatched base pairs. Nucleic Acids Res. 1987 Jan 26;15(2):797–811. [PMC free article] [PubMed]
  • Lee JT, Nussbaum RL. An arginine to glutamine mutation in residue 109 of human ornithine transcarbamylase completely abolishes enzymatic activity in Cos1 cells. J Clin Invest. 1989 Dec;84(6):1762–1766. [PMC free article] [PubMed]
  • Youssoufian H, Antonarakis SE, Bell W, Griffin AM, Kazazian HH., Jr Nonsense and missense mutations in hemophilia A: estimate of the relative mutation rate at CG dinucleotides. Am J Hum Genet. 1988 May;42(5):718–725. [PubMed]
  • Stubnicer AC, Picat C, Grandchamp B. Rat porphobilinogen deaminase cDNA: nucleotide sequence of the erythropoietic form. Nucleic Acids Res. 1988 Apr 11;16(7):3102–3102. [PMC free article] [PubMed]
  • Beaumont C, Porcher C, Picat C, Nordmann Y, Grandchamp B. The mouse porphobilinogen deaminase gene. Structural organization, sequence, and transcriptional analysis. J Biol Chem. 1989 Sep 5;264(25):14829–14834. [PubMed]
  • Thomas SD, Jordan PM. Nucleotide sequence of the hemC locus encoding porphobilinogen deaminase of Escherichia coli K12. Nucleic Acids Res. 1986 Aug 11;14(15):6215–6226. [PMC free article] [PubMed]
  • Sharif AL, Smith AG, Abell C. Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. Eur J Biochem. 1989 Sep 15;184(2):353–359. [PubMed]
  • Miller AD, Packman LC, Hart GJ, Alefounder PR, Abell C, Battersby AR. Evidence that pyridoxal phosphate modification of lysine residues (Lys-55 and Lys-59) causes inactivation of hydroxymethylbilane synthase (porphobilinogen deaminase). Biochem J. 1989 Aug 15;262(1):119–124. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation