PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m432.
Published online 2009 March 25. doi:  10.1107/S1600536809008861
PMCID: PMC2968963

(S,R,Rp)-N,N-Dimethyl-1-{2-[(1-phenyl­ethyl)amino­meth­yl]ferrocen­yl}ethanamine

Abstract

The title chiral ferrocene compound, [Fe(C5H5)(C18H25N2)], contains one planar and two central chiral centers. It is of inter­est with respect to asymmetric catalysis. The absolute configuration of the planar chirality is Rp at the ferrocene group and those of the two C chiral centers are R at the CH carbon of the ethanamine unit and S at the CH carbon of the phenyl­ethyl­amino substituent. In the ferrocenyl unit, the cyclo­penta­dienyl (Cp) rings are planar, with maximum deviations of 0.002 (2) Å for the substituted and 0.008 (3) Å for the unsubstituted Cp ring. The dihedral angle between the ring planes is 2.12 (15)° and the rings are twisted slightly from an eclipsed conformation by 7.06–7.60°.

Related literature

For background to the chemistry of chiral ferrocene complexes, see: Togni (1996 [triangle]); Nishibayashi et al. (1996 [triangle]). For their use in asymmetric synthesis, see: Togni et al. (1994 [triangle]); Dai et al. (2003 [triangle]). For the potential of these compounds as ligands in asymmetric catalysis, see Nikolaides et al. (2008 [triangle]). For a related structure, see: Liu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m432-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C18H25N2)]
  • M r = 390.34
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m432-efi1.jpg
  • a = 7.2081 (1) Å
  • b = 16.5546 (3) Å
  • c = 17.6747 (2) Å
  • V = 2109.07 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.72 mm−1
  • T = 293 K
  • 0.37 × 0.24 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.776, T max = 0.857
  • 9974 measured reflections
  • 4636 independent reflections
  • 3817 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.085
  • S = 1.04
  • 4636 reflections
  • 240 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.32 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1859 Friedel pairs
  • Flack parameter: 0.010 (17)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected torsion angles (°)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008861/sj2592sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008861/sj2592Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for support of this work.

supplementary crystallographic information

Comment

Ferrocenes with chirality are increasing their importance as chiral ligands in asymmetric catalysis (Togni, 1996, Nishibayashi et al., 1996). Especially ferrocene-based ligands incorporating both planar and central chirality are very important and some of them have already been applied in hydrogenation, allylic alkylation, and hydroboration (Togni et al., 1994, Dai et al., 2003). We are interested in the synthesis and the fascinating properties of chiral ferrocenes with both central and planar chirality (Liu et al., 2007).

The molecular structure of the title compound is shown in Fig. 1. The absolute configuration of the molecule is Rp at the ferrocene group, R and S at the asymmetric carbon atoms C11 and C16 respectively. Both N atoms have a pyramidal geometry with C—N—C angles between 112.0 (2) and 113.95 (18)°. The N lone-pairs are not involved in short intra- or intermolecular interactions. The two N atoms lie on the same coordination plane and may be available to coordinate to metal ions as bidentate ligands or to act as a ligand for asymmetric catalysis (Nikolaides et al., 2008).

In the molecule, the cyclopentadienyl(Cp) rings are almost parallel with a dihedral angle of 2.12 (15)° between the Cp ring planes. The Cp rings are twisted slightly from the eclipsed conformation. The values of torsion angles of the two Cp rings (C—Cg1—Cg2—C) are in the range 7.06–7.61° (Table 1). The benzene and Cp rings are obviously not parallel. The dihedral angle between the substituted Cp ring and the benzene ring is 53.59 (13)°. The Fe—C bond distances within the ferrocene group are in the range of 2.023 (3)–2.046 (2)Å for the unsubstituted cyclopentadienyl (Cp) ring (C1–C5) and 2.024 (2)–2.052 (2)Å for the substituted Cp ring (C6–C10).

Experimental

(R,Sp)-2-[1-(dimethylamino)ethyl]ferrocenylaldehyde(0.285 g, 1 mmol) was dissolved in anhydrous chloroform (30 ml) and (S)-1-phenylethanamine(0.121 mg, 1 mmol) was added. The red solution was refluxed under a nitrogen atmosphere for 2 h. After removing the solvent, the residue was dissolved in 30 ml dry methanol. 0.160 g NaBH4 were added in small portions. The mixture was stirred for 30 min, then 20 ml, 1 mol/L aqueous NaOH was added and the mixture was extracted with CHCl3(3×30 ml). The combined organic phase was dried with anhydrous NaCO3. The solvent was evaporated in vacuo and the residue was purified by column chromatography (silica gel; hexane-ethyl acetate, 6:2) giving the title compound as yellow crystals (0.356 mg, 91.3%). Single crystals were grown from hexane- ethylacetate (2:1) solution at room temperature.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.98 Å (for the C5H5 groups), 0.93 Å (for the C6H6groups) and 0.96 Å (for CH3 groups), their isotropic displacement parameters were set to 1.2 times (1.5times for CH3 groups) the equivalent displacement parameters of their parent atoms. The absolute configuration of the structure was determined from the diffraction data using 1859 Friedel pairs with the Flack parameter (Flack, 1983) 0.010 (17).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probabiltiy level and H atoms omitted.

Crystal data

[Fe(C5H5)(C18H25N2)]Dx = 1.229 Mg m3
Mr = 390.34Melting point: 355 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4056 reflections
a = 7.2081 (1) Åθ = 2.5–26.6°
b = 16.5546 (3) ŵ = 0.72 mm1
c = 17.6747 (2) ÅT = 293 K
V = 2109.07 (5) Å3Prism, orange
Z = 40.37 × 0.24 × 0.22 mm
F(000) = 832

Data collection

Bruker APEXII CCD area-detector diffractometer4636 independent reflections
Radiation source: fine-focus sealed tube3817 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −9→9
Tmin = 0.776, Tmax = 0.857k = −17→21
9974 measured reflectionsl = −22→19

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032w = 1/[σ2(Fo2) + (0.0459P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.31 e Å3
4636 reflectionsΔρmin = −0.32 e Å3
240 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0097 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1859 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.010 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.0099 (3)0.12997 (16)0.17507 (15)0.0575 (6)
H11.07340.15960.21550.069*
C20.8903 (4)0.06312 (16)0.18440 (17)0.0640 (7)
H20.85600.03750.23240.077*
C30.8321 (4)0.03934 (17)0.1114 (2)0.0773 (8)
H30.7485−0.00570.10000.093*
C40.9105 (4)0.0916 (2)0.05836 (17)0.0750 (8)
H40.89260.08900.00350.090*
C51.0207 (3)0.14668 (19)0.09645 (15)0.0633 (7)
H51.09320.19010.07310.076*
C60.6597 (3)0.25943 (12)0.18108 (11)0.0425 (5)
C70.5401 (3)0.19310 (12)0.20037 (11)0.0392 (4)
C80.4708 (3)0.16030 (15)0.13168 (14)0.0525 (5)
H80.38710.11390.12730.063*
C90.5447 (3)0.20488 (18)0.07092 (13)0.0609 (7)
H90.52000.19520.01720.073*
C100.6594 (3)0.26565 (15)0.10043 (13)0.0564 (6)
H100.72890.30540.07070.068*
C110.7553 (4)0.31317 (12)0.23737 (12)0.0550 (5)
H110.79530.27800.27890.066*
C120.9319 (4)0.35294 (18)0.2063 (2)0.0882 (10)
H12A0.90090.38590.16340.132*
H12B1.01820.31180.19110.132*
H12C0.98700.38600.24480.132*
C130.5480 (6)0.4271 (2)0.2146 (3)0.1220 (15)
H13A0.44450.45590.23540.183*
H13B0.50930.39870.16990.183*
H13C0.64470.46450.20170.183*
C140.6865 (6)0.4093 (2)0.3382 (2)0.1248 (16)
H14A0.78240.44690.32460.187*
H14B0.73600.36950.37210.187*
H14C0.58680.43770.36250.187*
C150.4913 (3)0.16768 (12)0.27843 (12)0.0461 (5)
H15A0.43760.11400.27720.055*
H15B0.60290.16550.30910.055*
C160.3378 (4)0.21395 (16)0.39411 (14)0.0633 (7)
H160.46160.20720.41610.076*
C170.2528 (6)0.28883 (17)0.42764 (16)0.1024 (11)
H17A0.33360.33400.41910.154*
H17B0.23560.28130.48100.154*
H17C0.13490.29890.40420.154*
C180.2250 (3)0.13936 (13)0.41281 (11)0.0509 (5)
C190.0457 (4)0.12998 (17)0.38743 (14)0.0650 (7)
H19−0.00580.16950.35650.078*
C20−0.0590 (4)0.06375 (19)0.40671 (17)0.0758 (8)
H20−0.17940.05890.38830.091*
C210.0113 (5)0.00555 (17)0.45218 (17)0.0759 (8)
H21−0.0612−0.03840.46630.091*
C220.1906 (5)0.01226 (19)0.47722 (16)0.0807 (10)
H220.2409−0.02800.50770.097*
C230.2971 (4)0.07837 (17)0.45754 (14)0.0668 (7)
H230.41890.08190.47460.080*
Fe10.75311 (4)0.155327 (15)0.131986 (14)0.04165 (10)
N10.3592 (3)0.22386 (11)0.31260 (10)0.0502 (5)
H1A0.29960.25950.28690.060*
N20.6172 (4)0.36957 (12)0.27003 (14)0.0728 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0306 (11)0.0782 (18)0.0636 (15)0.0089 (11)−0.0034 (10)−0.0003 (12)
C20.0506 (14)0.0629 (15)0.0785 (17)0.0228 (12)0.0044 (12)0.0085 (13)
C30.0554 (15)0.0600 (16)0.116 (2)0.0148 (12)−0.0005 (16)−0.0323 (16)
C40.0477 (15)0.109 (2)0.0685 (17)0.0210 (15)0.0076 (13)−0.0260 (17)
C50.0323 (11)0.0912 (19)0.0665 (15)0.0067 (12)0.0094 (11)−0.0015 (15)
C60.0398 (11)0.0395 (11)0.0483 (11)0.0034 (9)0.0055 (9)0.0042 (9)
C70.0287 (10)0.0402 (10)0.0485 (11)0.0030 (8)0.0048 (8)−0.0034 (9)
C80.0258 (9)0.0647 (13)0.0668 (14)0.0042 (9)−0.0048 (10)−0.0160 (15)
C90.0439 (13)0.0933 (19)0.0457 (13)0.0131 (13)−0.0078 (11)−0.0003 (13)
C100.0504 (13)0.0651 (15)0.0538 (13)0.0086 (11)0.0042 (12)0.0160 (12)
C110.0559 (12)0.0421 (10)0.0669 (13)−0.0068 (12)−0.0005 (15)−0.0005 (9)
C120.070 (2)0.0742 (19)0.120 (3)−0.0304 (15)0.0168 (18)−0.0116 (19)
C130.143 (4)0.065 (2)0.157 (4)0.043 (2)0.039 (3)0.013 (2)
C140.122 (3)0.115 (3)0.137 (3)−0.041 (2)0.029 (3)−0.079 (2)
C150.0461 (12)0.0376 (11)0.0545 (12)0.0032 (9)0.0117 (10)0.0045 (9)
C160.0703 (16)0.0692 (16)0.0503 (13)−0.0099 (13)0.0105 (12)−0.0073 (12)
C170.148 (3)0.0723 (18)0.0865 (19)−0.013 (3)0.045 (3)−0.0284 (15)
C180.0549 (15)0.0620 (13)0.0360 (9)0.0027 (11)0.0093 (10)−0.0014 (8)
C190.0621 (16)0.0756 (17)0.0574 (15)0.0046 (13)0.0012 (12)0.0194 (12)
C200.0616 (17)0.092 (2)0.0741 (18)−0.0082 (15)0.0021 (14)0.0083 (16)
C210.090 (2)0.0652 (17)0.0727 (17)−0.0054 (15)0.0308 (17)0.0090 (14)
C220.098 (3)0.0750 (18)0.0695 (17)0.0160 (16)0.0104 (15)0.0252 (14)
C230.0604 (18)0.0846 (18)0.0555 (13)0.0105 (13)0.0007 (12)0.0056 (13)
Fe10.02711 (14)0.05359 (17)0.04423 (15)0.00363 (15)0.00133 (16)−0.00439 (12)
N10.0546 (11)0.0482 (10)0.0477 (10)0.0096 (8)0.0138 (9)0.0055 (8)
N20.0835 (16)0.0471 (12)0.0877 (15)−0.0094 (11)0.0198 (14)−0.0162 (11)

Geometric parameters (Å, °)

C1—C21.413 (4)C12—H12A0.9600
C1—C51.419 (4)C12—H12B0.9600
C1—Fe12.045 (2)C12—H12C0.9600
C1—H10.9800C13—N21.454 (4)
C2—C31.412 (4)C13—H13A0.9600
C2—Fe12.041 (2)C13—H13B0.9600
C2—H20.9800C13—H13C0.9600
C3—C41.395 (4)C14—N21.460 (4)
C3—Fe12.036 (3)C14—H14A0.9600
C3—H30.9800C14—H14B0.9600
C4—C51.384 (4)C14—H14C0.9600
C4—Fe12.024 (3)C15—N11.462 (2)
C4—H40.9800C15—H15A0.9700
C5—Fe12.033 (2)C15—H15B0.9700
C5—H50.9800C16—N11.458 (3)
C6—C101.429 (3)C16—C171.504 (4)
C6—C71.437 (3)C16—C181.515 (3)
C6—C111.502 (3)C16—H160.9800
C6—Fe12.043 (2)C17—H17A0.9600
C7—C81.421 (3)C17—H17B0.9600
C7—C151.485 (3)C17—H17C0.9600
C7—Fe12.0514 (18)C18—C191.377 (3)
C8—C91.408 (4)C18—C231.384 (3)
C8—Fe12.0368 (19)C19—C201.374 (4)
C8—H80.9800C19—H190.9300
C9—C101.403 (4)C20—C211.353 (4)
C9—Fe12.024 (2)C20—H200.9300
C9—H90.9800C21—C221.371 (4)
C10—Fe12.025 (2)C21—H210.9300
C10—H100.9800C22—C231.381 (4)
C11—N21.482 (3)C22—H220.9300
C11—C121.535 (3)C23—H230.9300
C11—H110.9800N1—H1A0.8600
C2—C1—C5107.5 (2)C7—C15—H15A109.4
C2—C1—Fe169.61 (14)N1—C15—H15B109.4
C5—C1—Fe169.18 (14)C7—C15—H15B109.4
C2—C1—H1126.3H15A—C15—H15B108.0
C5—C1—H1126.3N1—C16—C17109.9 (2)
Fe1—C1—H1126.3N1—C16—C18111.36 (19)
C3—C2—C1107.0 (3)C17—C16—C18111.5 (2)
C3—C2—Fe169.52 (16)N1—C16—H16108.0
C1—C2—Fe169.94 (14)C17—C16—H16108.0
C3—C2—H2126.5C18—C16—H16108.0
C1—C2—H2126.5C16—C17—H17A109.5
Fe1—C2—H2126.5C16—C17—H17B109.5
C4—C3—C2108.7 (3)H17A—C17—H17B109.5
C4—C3—Fe169.44 (17)C16—C17—H17C109.5
C2—C3—Fe169.94 (14)H17A—C17—H17C109.5
C4—C3—H3125.6H17B—C17—H17C109.5
C2—C3—H3125.6C19—C18—C23117.2 (2)
Fe1—C3—H3125.6C19—C18—C16121.6 (2)
C5—C4—C3108.3 (3)C23—C18—C16121.2 (2)
C5—C4—Fe170.42 (15)C20—C19—C18121.7 (3)
C3—C4—Fe170.36 (15)C20—C19—H19119.2
C5—C4—H4125.8C18—C19—H19119.2
C3—C4—H4125.8C21—C20—C19120.6 (3)
Fe1—C4—H4125.8C21—C20—H20119.7
C4—C5—C1108.5 (3)C19—C20—H20119.7
C4—C5—Fe169.67 (14)C20—C21—C22119.2 (3)
C1—C5—Fe170.10 (13)C20—C21—H21120.4
C4—C5—H5125.8C22—C21—H21120.4
C1—C5—H5125.8C21—C22—C23120.5 (3)
Fe1—C5—H5125.8C21—C22—H22119.8
C10—C6—C7106.91 (19)C23—C22—H22119.8
C10—C6—C11128.2 (2)C22—C23—C18120.9 (3)
C7—C6—C11124.79 (18)C22—C23—H23119.6
C10—C6—Fe168.76 (13)C18—C23—H23119.6
C7—C6—Fe169.75 (11)C4—Fe1—C9106.55 (12)
C11—C6—Fe1129.02 (16)C4—Fe1—C10118.70 (12)
C8—C7—C6107.48 (18)C9—Fe1—C1040.54 (10)
C8—C7—C15127.04 (19)C4—Fe1—C539.90 (11)
C6—C7—C15125.40 (18)C9—Fe1—C5124.61 (11)
C8—C7—Fe169.11 (11)C10—Fe1—C5107.13 (11)
C6—C7—Fe169.16 (11)C4—Fe1—C340.20 (12)
C15—C7—Fe1129.67 (14)C9—Fe1—C3119.66 (12)
C9—C8—C7108.6 (2)C10—Fe1—C3153.46 (13)
C9—C8—Fe169.22 (13)C5—Fe1—C367.24 (13)
C7—C8—Fe170.22 (11)C4—Fe1—C8125.42 (11)
C9—C8—H8125.7C9—Fe1—C840.57 (10)
C7—C8—H8125.7C10—Fe1—C868.27 (10)
Fe1—C8—H8125.7C5—Fe1—C8161.76 (11)
C10—C9—C8108.4 (2)C3—Fe1—C8108.50 (11)
C10—C9—Fe169.80 (13)C4—Fe1—C268.29 (12)
C8—C9—Fe170.22 (13)C9—Fe1—C2154.81 (11)
C10—C9—H9125.8C10—Fe1—C2163.91 (11)
C8—C9—H9125.8C5—Fe1—C268.16 (12)
Fe1—C9—H9125.8C3—Fe1—C240.54 (12)
C9—C10—C6108.7 (2)C8—Fe1—C2121.03 (11)
C9—C10—Fe169.66 (14)C4—Fe1—C6153.86 (12)
C6—C10—Fe170.11 (13)C9—Fe1—C668.90 (9)
C9—C10—H10125.7C10—Fe1—C641.12 (9)
C6—C10—H10125.7C5—Fe1—C6120.20 (11)
Fe1—C10—H10125.7C3—Fe1—C6164.47 (11)
N2—C11—C6108.8 (2)C8—Fe1—C668.77 (9)
N2—C11—C12115.25 (19)C2—Fe1—C6126.70 (10)
C6—C11—C12113.4 (2)C4—Fe1—C167.97 (11)
N2—C11—H11106.2C9—Fe1—C1162.51 (11)
C6—C11—H11106.2C10—Fe1—C1126.11 (11)
C12—C11—H11106.2C5—Fe1—C140.72 (10)
C11—C12—H12A109.5C3—Fe1—C167.64 (11)
C11—C12—H12B109.5C8—Fe1—C1156.02 (11)
H12A—C12—H12B109.5C2—Fe1—C140.45 (11)
C11—C12—H12C109.5C6—Fe1—C1108.25 (10)
H12A—C12—H12C109.5C4—Fe1—C7163.22 (11)
H12B—C12—H12C109.5C9—Fe1—C768.60 (9)
N2—C13—H13A109.5C10—Fe1—C768.78 (9)
N2—C13—H13B109.5C5—Fe1—C7155.95 (10)
H13A—C13—H13B109.5C3—Fe1—C7127.02 (11)
N2—C13—H13C109.5C8—Fe1—C740.67 (9)
H13A—C13—H13C109.5C2—Fe1—C7108.85 (10)
H13B—C13—H13C109.5C6—Fe1—C741.09 (8)
N2—C14—H14A109.5C1—Fe1—C7121.37 (9)
N2—C14—H14B109.5C16—N1—C15113.94 (19)
H14A—C14—H14B109.5C16—N1—H1A123.0
N2—C14—H14C109.5C15—N1—H1A123.0
H14A—C14—H14C109.5C13—N2—C14112.2 (3)
H14B—C14—H14C109.5C13—N2—C11112.3 (2)
N1—C15—C7110.97 (16)C14—N2—C11112.0 (3)
N1—C15—H15A109.4
C5—C1—C2—C30.9 (3)C1—C5—Fe1—C749.8 (3)
Fe1—C1—C2—C359.90 (17)C2—C3—Fe1—C4120.1 (2)
C5—C1—C2—Fe1−59.04 (17)C4—C3—Fe1—C980.4 (2)
C1—C2—C3—C4−1.4 (3)C2—C3—Fe1—C9−159.44 (15)
Fe1—C2—C3—C458.77 (19)C4—C3—Fe1—C1045.2 (3)
C1—C2—C3—Fe1−60.17 (17)C2—C3—Fe1—C10165.3 (2)
C2—C3—C4—C51.4 (3)C4—C3—Fe1—C5−37.59 (16)
Fe1—C3—C4—C560.48 (19)C2—C3—Fe1—C582.53 (18)
C2—C3—C4—Fe1−59.08 (18)C4—C3—Fe1—C8123.44 (17)
C3—C4—C5—C1−0.9 (3)C2—C3—Fe1—C8−116.43 (17)
Fe1—C4—C5—C159.58 (18)C4—C3—Fe1—C2−120.1 (2)
C3—C4—C5—Fe1−60.44 (19)C4—C3—Fe1—C6−159.4 (3)
C2—C1—C5—C40.0 (3)C2—C3—Fe1—C6−39.3 (5)
Fe1—C1—C5—C4−59.32 (18)C4—C3—Fe1—C1−81.85 (18)
C2—C1—C5—Fe159.31 (17)C2—C3—Fe1—C138.27 (16)
C10—C6—C7—C80.3 (2)C4—C3—Fe1—C7164.90 (15)
C11—C6—C7—C8177.2 (2)C2—C3—Fe1—C7−74.98 (19)
Fe1—C6—C7—C8−58.68 (13)C9—C8—Fe1—C4−72.9 (2)
C10—C6—C7—C15−176.47 (19)C7—C8—Fe1—C4167.16 (16)
C11—C6—C7—C150.5 (3)C7—C8—Fe1—C9−119.9 (2)
Fe1—C6—C7—C15124.58 (19)C9—C8—Fe1—C1037.60 (15)
C10—C6—C7—Fe158.96 (15)C7—C8—Fe1—C10−82.29 (14)
C11—C6—C7—Fe1−124.1 (2)C9—C8—Fe1—C5−41.1 (4)
C6—C7—C8—C9−0.1 (2)C7—C8—Fe1—C5−161.0 (3)
C15—C7—C8—C9176.6 (2)C9—C8—Fe1—C3−114.31 (18)
Fe1—C7—C8—C9−58.76 (15)C7—C8—Fe1—C3125.79 (15)
C6—C7—C8—Fe158.71 (14)C9—C8—Fe1—C2−157.09 (16)
C15—C7—C8—Fe1−124.6 (2)C7—C8—Fe1—C283.01 (16)
C7—C8—C9—C10−0.2 (3)C9—C8—Fe1—C681.95 (16)
Fe1—C8—C9—C10−59.58 (17)C7—C8—Fe1—C6−37.95 (12)
C7—C8—C9—Fe159.38 (15)C9—C8—Fe1—C1169.3 (2)
C8—C9—C10—C60.4 (3)C7—C8—Fe1—C149.4 (3)
Fe1—C9—C10—C6−59.47 (16)C9—C8—Fe1—C7119.9 (2)
C8—C9—C10—Fe159.84 (17)C3—C2—Fe1—C4−36.93 (17)
C7—C6—C10—C9−0.4 (3)C1—C2—Fe1—C481.06 (18)
C11—C6—C10—C9−177.2 (2)C3—C2—Fe1—C945.8 (3)
Fe1—C6—C10—C959.19 (17)C1—C2—Fe1—C9163.8 (2)
C7—C6—C10—Fe1−59.59 (14)C3—C2—Fe1—C10−155.9 (3)
C11—C6—C10—Fe1123.6 (2)C1—C2—Fe1—C10−37.9 (4)
C10—C6—C11—N2101.0 (3)C3—C2—Fe1—C5−80.05 (19)
C7—C6—C11—N2−75.2 (3)C1—C2—Fe1—C537.95 (16)
Fe1—C6—C11—N2−166.40 (16)C1—C2—Fe1—C3118.0 (2)
C10—C6—C11—C12−28.7 (3)C3—C2—Fe1—C882.3 (2)
C7—C6—C11—C12155.1 (2)C1—C2—Fe1—C8−159.69 (15)
Fe1—C6—C11—C1263.9 (3)C3—C2—Fe1—C6167.79 (17)
C8—C7—C15—N1−101.7 (2)C1—C2—Fe1—C6−74.21 (19)
C6—C7—C15—N174.4 (3)C3—C2—Fe1—C1−118.0 (2)
Fe1—C7—C15—N1165.68 (15)C3—C2—Fe1—C7125.43 (17)
N1—C16—C18—C19−59.7 (3)C1—C2—Fe1—C7−116.57 (16)
C17—C16—C18—C1963.5 (3)C10—C6—Fe1—C447.4 (3)
N1—C16—C18—C23121.7 (2)C7—C6—Fe1—C4165.9 (2)
C17—C16—C18—C23−115.2 (3)C11—C6—Fe1—C4−75.2 (3)
C23—C18—C19—C201.2 (4)C10—C6—Fe1—C9−37.20 (15)
C16—C18—C19—C20−177.5 (2)C7—C6—Fe1—C981.22 (13)
C18—C19—C20—C210.6 (4)C11—C6—Fe1—C9−159.8 (2)
C19—C20—C21—C22−1.8 (5)C7—C6—Fe1—C10118.42 (19)
C20—C21—C22—C231.3 (4)C11—C6—Fe1—C10−122.6 (2)
C21—C22—C23—C180.5 (4)C10—C6—Fe1—C581.47 (17)
C19—C18—C23—C22−1.7 (4)C7—C6—Fe1—C5−160.10 (13)
C16—C18—C23—C22177.0 (2)C11—C6—Fe1—C5−41.2 (2)
C5—C4—Fe1—C9124.64 (19)C10—C6—Fe1—C3−163.6 (3)
C3—C4—Fe1—C9−116.63 (18)C7—C6—Fe1—C3−45.1 (4)
C5—C4—Fe1—C1082.5 (2)C11—C6—Fe1—C373.8 (4)
C3—C4—Fe1—C10−158.81 (17)C10—C6—Fe1—C8−80.85 (16)
C3—C4—Fe1—C5118.7 (3)C7—C6—Fe1—C837.57 (13)
C5—C4—Fe1—C3−118.7 (3)C11—C6—Fe1—C8156.5 (2)
C5—C4—Fe1—C8165.07 (16)C10—C6—Fe1—C2165.56 (16)
C3—C4—Fe1—C8−76.2 (2)C7—C6—Fe1—C2−76.01 (15)
C5—C4—Fe1—C2−81.49 (19)C11—C6—Fe1—C242.9 (2)
C3—C4—Fe1—C237.24 (17)C10—C6—Fe1—C1124.46 (15)
C5—C4—Fe1—C648.9 (3)C7—C6—Fe1—C1−117.11 (13)
C3—C4—Fe1—C6167.7 (2)C11—C6—Fe1—C11.8 (2)
C5—C4—Fe1—C1−37.75 (17)C10—C6—Fe1—C7−118.42 (19)
C3—C4—Fe1—C180.98 (18)C11—C6—Fe1—C7118.9 (2)
C5—C4—Fe1—C7−164.8 (3)C2—C1—Fe1—C4−81.93 (19)
C3—C4—Fe1—C7−46.1 (4)C5—C1—Fe1—C437.02 (19)
C10—C9—Fe1—C4−115.05 (17)C2—C1—Fe1—C9−156.7 (3)
C8—C9—Fe1—C4125.64 (17)C5—C1—Fe1—C9−37.8 (4)
C8—C9—Fe1—C10−119.3 (2)C2—C1—Fe1—C10167.83 (15)
C10—C9—Fe1—C5−75.16 (18)C5—C1—Fe1—C10−73.2 (2)
C8—C9—Fe1—C5165.53 (15)C2—C1—Fe1—C5−118.9 (2)
C10—C9—Fe1—C3−156.65 (17)C2—C1—Fe1—C3−38.36 (18)
C8—C9—Fe1—C384.04 (18)C5—C1—Fe1—C380.6 (2)
C10—C9—Fe1—C8119.3 (2)C2—C1—Fe1—C847.0 (3)
C10—C9—Fe1—C2170.9 (2)C5—C1—Fe1—C8166.0 (2)
C8—C9—Fe1—C251.6 (3)C5—C1—Fe1—C2118.9 (2)
C10—C9—Fe1—C637.72 (14)C2—C1—Fe1—C6125.67 (16)
C8—C9—Fe1—C6−81.60 (15)C5—C1—Fe1—C6−115.39 (17)
C10—C9—Fe1—C1−46.1 (4)C2—C1—Fe1—C782.42 (17)
C8—C9—Fe1—C1−165.4 (3)C5—C1—Fe1—C7−158.63 (16)
C10—C9—Fe1—C781.95 (15)C8—C7—Fe1—C4−38.8 (4)
C8—C9—Fe1—C7−37.36 (13)C6—C7—Fe1—C4−158.1 (4)
C9—C10—Fe1—C481.92 (18)C15—C7—Fe1—C482.6 (4)
C6—C10—Fe1—C4−158.28 (14)C8—C7—Fe1—C937.27 (15)
C6—C10—Fe1—C9119.8 (2)C6—C7—Fe1—C9−82.02 (14)
C9—C10—Fe1—C5123.64 (15)C15—C7—Fe1—C9158.7 (2)
C6—C10—Fe1—C5−116.56 (15)C8—C7—Fe1—C1080.94 (15)
C9—C10—Fe1—C350.4 (3)C6—C7—Fe1—C10−38.35 (13)
C6—C10—Fe1—C3170.2 (2)C15—C7—Fe1—C10−157.7 (2)
C9—C10—Fe1—C8−37.62 (14)C8—C7—Fe1—C5165.5 (2)
C6—C10—Fe1—C882.17 (15)C6—C7—Fe1—C546.2 (3)
C9—C10—Fe1—C2−166.0 (3)C15—C7—Fe1—C5−73.1 (3)
C6—C10—Fe1—C2−46.2 (4)C8—C7—Fe1—C3−74.46 (18)
C9—C10—Fe1—C6−119.8 (2)C6—C7—Fe1—C3166.25 (14)
C9—C10—Fe1—C1164.45 (15)C15—C7—Fe1—C346.9 (2)
C6—C10—Fe1—C1−75.75 (18)C6—C7—Fe1—C8−119.29 (18)
C9—C10—Fe1—C7−81.48 (14)C15—C7—Fe1—C8121.4 (2)
C6—C10—Fe1—C738.32 (13)C8—C7—Fe1—C2−116.01 (15)
C1—C5—Fe1—C4−119.5 (3)C6—C7—Fe1—C2124.70 (14)
C4—C5—Fe1—C9−73.4 (2)C15—C7—Fe1—C25.4 (2)
C1—C5—Fe1—C9167.07 (16)C8—C7—Fe1—C6119.29 (18)
C4—C5—Fe1—C10−114.5 (2)C15—C7—Fe1—C6−119.3 (2)
C1—C5—Fe1—C10125.96 (17)C8—C7—Fe1—C1−158.82 (15)
C4—C5—Fe1—C337.86 (19)C6—C7—Fe1—C181.89 (15)
C1—C5—Fe1—C3−81.7 (2)C15—C7—Fe1—C1−37.4 (2)
C4—C5—Fe1—C8−42.1 (4)C17—C16—N1—C15161.4 (3)
C1—C5—Fe1—C8−161.6 (3)C18—C16—N1—C15−74.6 (3)
C4—C5—Fe1—C281.8 (2)C7—C15—N1—C16−166.5 (2)
C1—C5—Fe1—C2−37.71 (17)C6—C11—N2—C13−67.2 (3)
C4—C5—Fe1—C6−157.39 (18)C12—C11—N2—C1361.4 (3)
C1—C5—Fe1—C683.07 (19)C6—C11—N2—C14165.4 (2)
C4—C5—Fe1—C1119.5 (3)C12—C11—N2—C14−65.9 (3)
C4—C5—Fe1—C7169.3 (2)

Table 1 Table 1

Selected torsion angles (°)

C1—Cg1—Cg2—C67.60C4—Cg1—Cg2—C97.51
C2—Cg1—Cg2—C77.06C5—Cg1—Cg2—C107.16
C3—Cg1—Cg2—C87.38

Cg1 is the centroid of the C1–C5 Cp ring and Cg2 is the centroid of the C6–C10 Cp ring.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2592).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dai, L. X., Tu, T., You, S. L., Deng, W. P. & Hou, X. L. (2003). Acc. Chem. Res.36, 659–667. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Liu, J.-T., Mao, Y.-J., Xi, R.-M. & Dong, W.-L. (2007). Acta Cryst. E63, m2499–m2500.
  • Nikolaides, K. R., Hoffmann, S. D. & Eppinger, J. (2008). J. Organomet. Chem.693, 2223–2230.
  • Nishibayashi, Y., Arikawa, Y., Ohe, K. & Uemura, S. (1996). J. Org. Chem.61, 1172–1174.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Togni, A. (1996). Angew. Chem. Int. Ed.35, 1475–1477.
  • Togni, A., Breutel, C., Schnyder, A., Spindler, F., Landert, H. & Tijani, A. (1994). J. Am. Chem. Soc.116, 4062-4066.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography