PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m357.
Published online 2009 March 6. doi:  10.1107/S1600536809007016
PMCID: PMC2968956

trans-Di-μ-acetato-[μ-N,N-bis­(diphenyl­phosphino)aniline]bis­[chlorido­molybdenum(II)](Mo—Mo)–dichloro­methane–tetra­hydro­furan (1/0.3/1.7)

Abstract

The mol­ecular structure of the title compound, [Mo2(CH3COO)2Cl2(C30H25NP2)]·0.3CH2Cl2·1.7C4H8O, features an Mo—Mo dumbbell bridged by two acetate groups which are trans to each other. Perpendicular to the plane spanned by the acetate groups, the Ph2PN(Ph)PPh2 ligand bridges both Mo atoms, having a P—N—P angle of 114.09 (19)°. In a trans position to the PNP ligand are two Cl atoms, one on each molybdenum centre. The Mo—Mo bond distance is 2.1161 (9) Å, within the range known for Mo—Mo quadruple bonds. The Mo complex is located on a crystallographic twofold rotation axis which runs through the N—C bond of the ligand. The site occupation factors of the disordered solvent molecules were fixed to 0.15 for dichloromethane and 0.85 for tetrahydrofuran.

Related literature

For derivatives of the title compound, mostly with monodentate phosphane ligands, see Green et al. (1982 [triangle]). For the synthesis and structural evaluation of dimolybdenum species containing two trans-standing PNP ligands, see: Cotton et al. (1996 [triangle], 2006 [triangle]), Arnold et al. (1996 [triangle]), Wu et al. (1997 [triangle]). For the catalytic properties of the PNP ligand systems with middle and late transition metals, see: Wöhl et al. (2009 [triangle]). For the free ligand, see Fei et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m357-scheme1.jpg

Experimental

Crystal data

  • [Mo2(C2H3O2)2Cl2(C30H25NP2)]·0.3CH2Cl2·1.7C4H8O
  • M r = 990.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m357-efi2.jpg
  • a = 15.769 (3) Å
  • b = 13.913 (3) Å
  • c = 20.108 (4) Å
  • β = 107.32 (3)°
  • V = 4211.3 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 200 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Stoe IPDS-II diffractometer
  • Absorption correction: none
  • 33618 measured reflections
  • 4834 independent reflections
  • 3695 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.076
  • S = 0.90
  • 4834 reflections
  • 263 parameters
  • 22 restraints
  • H-atom parameters constrained
  • Δρmax = 0.99 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007016/bt2886sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007016/bt2886Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

supplementary crystallographic information

Comment

In the chemistry of molecular compounds containing two metal atoms sharing a metal-metal-bond, chelating ligands have found wide-spread use (Cotton et al. 2006). Ligands containing the "PNP" moiety as the structural motif of the coordination unit have been used in a number of cases for the bridging of the metal-metal unit. In all cases, the Mo—Mo bond was symmetrically bridged by two PNP units, which are arranged in trans-position. In most cases the common precursor for the preparation of the diphosphine complexes was Mo(OAc)4, from which by addition of TMSCl two acetato groups were removed and the free coordination sites occupied by the PNP ligands (Arnold et al. 1996, Wu et al. 1997 and Cotton et al. 1996). We became interested into PNP complexes during our studies on the selective oligomerization of ethene via transition metal-catalyzed tri- or tetramerization, yielding 1-hexene or 1-octene (Wöhl et al. 2009). Our initial experimental work was focusing on a chromium-based catalyst system (CrCl3(THF)3/Ph2PN(iPr)PPh2/MAO) where we also investigated the use of dinuclear chromium complexes. However, for reasons of comparison we wanted to examine comparable molybdenum complexes that contain the PNP ligand moiety. During these experiments we discovered, that by the procedure described below we were able to isolate a molybdenum complex, that contains only one PNP ligand, Ph2PN(Ph)PPh2, to bridge the two Mo centres, which has to the best of our knowledge not been described yet for PNP ligands. The molecular structure features a Mo—Mo unit which is bridged by two acetato groups which are trans to each other (Fig. 1). Perpendicular to the plane spanned by the acetato groups the Ph2PN(Ph)PPh2 ligand is bridging both Mo atoms, having a P—N—P angle of 114.09 (19)°, nearly the same as found in the free ligand (Fei et al. 2003). In trans-position to the PNP ligand are two chlorine atoms located, one at each molybdenum center. The Mo—Mo bond distance is 2.1161 (9) Å and within the range known for Mo—Mo quadruple bonds. The asymmetric unit of the title compound contains a half molecule of [(Ph2PN(Ph)PPh2)(OAC)2Cl2Mo2] besides THF and CH2Cl2 as lattice solvent with occupancies 0.85:0.15.

Experimental

Molybdenum(II)-acetate (200 mg, 0.467 mmol) and N,N-bis(diphenylphosphino)-phenylamine (2.5 equiv., 540 mg, 1.17 mmol) were weighted into a Schlenk flask and 25–30 ml dry THF added. To this green-yellow suspension trimethylsilylchloride (15 equiv., 0.9 ml, 7 mmol) was added via syringe and the reaction mixture stirred at room temperature. The colour of the solution was changing to yellow-orange, red and after a couple of minutes she became red-violett. After 10 minutes a red-violett precipitate started to appear while stirring was continued. After standing without stirring over night the reaction mixture was filtrated under argon and the violet solid product washed with 20 ml portions of THF and n-hexane twice each. The violet solid was dried in high vacuo giving a fine powder (328 mg). The compound was characterized by NMR (1H, 13C and 31P NMR; solvent: CDCl3). Suitable crystals for X-ray analysis have been grown by diffusion of THF into a solution of the complex in CH2Cl2.

Refinement

All non-H atoms excluding the CH2Cl2 molecule were refined anisotropically. C23, Cl2 and Cl3 were refined isotropically. The site occupation factors of the disordered solvent molecules were fixed to 0.85 for THF and 0.15 for dichloromethane. All H atoms were placed in idealized positions with d(C—H) = 0.99 (CH2), 0.98 (CH3) and 0.95 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH2 and CH. Distance restraints (SADI in SHELXL) were used to improve the geometry of THF and CH2Cl2. Additionally, the anisotropic displacement parameters (SIMU) of C atoms sharing a common bond in the THF molecule were restrained to be equal.

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labelling scheme (operator for generating equivalent atoms: -x + 2, y, -z + 3/2). Anisotropic displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms and solvent molecules ...

Crystal data

[Mo2(C2H3O2)2Cl2(C30H25NP2)]·0.3CH2Cl2·1.7C4H8OF(000) = 2010
Mr = 990.37Dx = 1.562 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 20698 reflections
a = 15.769 (3) Åθ = 1.9–29.7°
b = 13.913 (3) ŵ = 0.88 mm1
c = 20.108 (4) ÅT = 200 K
β = 107.32 (3)°Prism, red
V = 4211.3 (15) Å30.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Stoe IPDS-II diffractometer3695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
graphiteθmax = 27.5°, θmin = 2.0°
ω scansh = −20→20
33618 measured reflectionsk = −18→18
4834 independent reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.0436P)2] where P = (Fo2 + 2Fc2)/3
4834 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.99 e Å3
22 restraintsΔρmin = −0.72 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C230.3316 (18)0.371 (2)−0.0151 (15)0.038 (6)*0.15
H23A0.33120.33820.02860.046*0.15
H23B0.34560.3216−0.04580.046*0.15
Cl20.4164 (8)0.4554 (9)0.0049 (6)0.094 (3)*0.15
Cl30.1952 (10)0.4261 (14)−0.0668 (7)0.075 (3)*0.15
C10.9245 (2)0.6337 (2)0.60553 (15)0.0224 (6)
C20.8729 (2)0.7137 (2)0.57764 (17)0.0314 (7)
H20.83350.74000.60050.038*
C30.8792 (3)0.7547 (3)0.51670 (18)0.0387 (8)
H30.84300.80840.49730.046*
C40.9374 (3)0.7184 (3)0.48376 (18)0.0402 (8)
H40.94160.74750.44210.048*
C50.9894 (3)0.6402 (3)0.51100 (17)0.0359 (8)
H51.02990.61560.48840.043*
C60.9827 (2)0.5971 (2)0.57136 (15)0.0288 (6)
H61.01790.54240.58960.035*
C70.81890 (18)0.6061 (2)0.69921 (15)0.0222 (5)
C80.7406 (2)0.5965 (2)0.64439 (17)0.0289 (6)
H80.74300.57950.59920.035*
C90.6595 (2)0.6117 (2)0.6561 (2)0.0353 (7)
H90.60630.60440.61870.042*
C100.6545 (2)0.6371 (2)0.7204 (2)0.0366 (8)
H100.59840.64920.72720.044*
C110.7316 (2)0.6452 (2)0.7757 (2)0.0365 (8)
H110.72840.66230.82060.044*
C120.8134 (2)0.6282 (2)0.76538 (17)0.0282 (7)
H120.86600.63170.80370.034*
C131.00000.7507 (3)0.75000.0267 (9)
C140.9682 (2)0.8011 (2)0.7974 (2)0.0369 (8)
H140.94620.76750.82990.044*
C150.9689 (3)0.9006 (3)0.7968 (3)0.0540 (10)
H150.94750.93490.82940.065*
C161.00000.9505 (4)0.75000.0633 (19)
H161.00001.01870.75000.076*
C170.85381 (19)0.3927 (2)0.79476 (16)0.0246 (6)
C180.7734 (2)0.3832 (2)0.81938 (19)0.0344 (8)
H18A0.72930.43160.79630.052*
H18B0.79040.39280.86990.052*
H18C0.74790.31880.80800.052*
Cl10.93542 (6)0.23863 (6)0.65324 (4)0.03252 (18)
Mo10.958490 (16)0.400753 (17)0.697846 (12)0.01851 (7)
N11.00000.6457 (2)0.75000.0215 (7)
O10.84401 (13)0.38946 (15)0.72997 (11)0.0243 (4)
O21.07046 (13)0.40319 (15)0.66069 (10)0.0247 (4)
P10.92644 (5)0.57906 (5)0.68785 (4)0.01836 (15)
O30.2246 (4)0.4448 (4)0.0103 (3)0.0979 (17)0.85
C190.1975 (9)0.4284 (11)−0.0537 (6)0.112 (2)0.85
H19A0.19020.4890−0.08070.134*0.85
H19B0.14010.3938−0.06640.134*0.85
C200.2727 (5)0.3642 (6)−0.0674 (5)0.1111 (19)0.85
H20A0.26420.2953−0.05900.133*0.85
H20B0.27680.3727−0.11530.133*0.85
C210.3560 (7)0.4072 (6)−0.0112 (4)0.1117 (19)0.85
H21A0.38850.4538−0.03170.134*0.85
H21B0.39710.35640.01390.134*0.85
C220.3065 (6)0.4577 (6)0.0368 (5)0.1097 (19)0.85
H22A0.32630.42990.08420.132*0.85
H22B0.32000.52730.04020.132*0.85

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0244 (15)0.0238 (13)0.0181 (13)−0.0015 (11)0.0048 (11)0.0007 (11)
C20.0309 (17)0.0338 (17)0.0303 (16)0.0057 (13)0.0105 (14)0.0055 (13)
C30.043 (2)0.0373 (18)0.0342 (18)0.0079 (16)0.0095 (16)0.0154 (15)
C40.056 (2)0.0410 (19)0.0262 (16)−0.0023 (17)0.0164 (16)0.0088 (15)
C50.049 (2)0.0379 (18)0.0269 (16)0.0041 (15)0.0212 (16)0.0022 (14)
C60.0342 (16)0.0287 (14)0.0244 (14)0.0008 (14)0.0101 (12)0.0002 (13)
C70.0200 (13)0.0201 (13)0.0274 (14)0.0030 (11)0.0084 (11)0.0029 (12)
C80.0263 (15)0.0279 (15)0.0312 (15)0.0001 (13)0.0065 (12)0.0036 (14)
C90.0209 (15)0.0302 (17)0.051 (2)−0.0003 (13)0.0051 (14)0.0109 (15)
C100.0255 (17)0.0290 (16)0.062 (2)0.0052 (13)0.0224 (17)0.0091 (16)
C110.038 (2)0.0346 (18)0.046 (2)0.0028 (15)0.0255 (17)0.0008 (15)
C120.0257 (16)0.0307 (16)0.0295 (16)0.0012 (12)0.0102 (13)−0.0018 (12)
C130.021 (2)0.022 (2)0.033 (2)0.000−0.0004 (17)0.000
C140.0351 (19)0.0263 (16)0.047 (2)0.0040 (14)0.0081 (15)−0.0044 (15)
C150.050 (2)0.0286 (18)0.082 (3)0.0070 (18)0.018 (2)−0.013 (2)
C160.053 (4)0.018 (2)0.115 (6)0.0000.020 (4)0.000
C170.0256 (15)0.0190 (13)0.0329 (15)0.0001 (12)0.0142 (12)−0.0007 (12)
C180.0268 (16)0.0380 (19)0.0456 (19)−0.0021 (13)0.0218 (15)−0.0013 (15)
Cl10.0342 (4)0.0274 (4)0.0401 (4)−0.0066 (3)0.0173 (3)−0.0114 (3)
Mo10.01940 (12)0.01871 (11)0.01876 (11)0.00004 (10)0.00775 (8)−0.00079 (10)
N10.0215 (17)0.0169 (16)0.0244 (17)0.0000.0043 (14)0.000
O10.0209 (10)0.0244 (10)0.0297 (11)−0.0014 (8)0.0108 (8)−0.0007 (9)
O20.0267 (11)0.0268 (10)0.0242 (10)0.0012 (9)0.0133 (8)0.0008 (9)
P10.0183 (3)0.0193 (3)0.0178 (3)0.0008 (2)0.0057 (3)0.0006 (3)
O30.075 (3)0.140 (5)0.076 (3)0.007 (3)0.018 (3)0.049 (3)
C190.110 (4)0.079 (4)0.124 (4)0.013 (3)−0.001 (4)0.020 (4)
C200.112 (4)0.078 (3)0.119 (4)0.016 (3)−0.004 (3)0.020 (3)
C210.115 (4)0.080 (3)0.113 (4)0.019 (3)−0.005 (3)0.024 (3)
C220.118 (4)0.080 (3)0.109 (4)0.020 (3)−0.001 (3)0.025 (3)

Geometric parameters (Å, °)

C23—Cl21.74 (3)C14—H140.9500
C23—Cl32.23 (3)C15—C161.372 (5)
C23—H23A0.9900C15—H150.9500
C23—H23B0.9900C16—C15i1.372 (5)
C1—C21.395 (4)C16—H160.9500
C1—C61.396 (4)C17—O11.266 (4)
C1—P11.813 (3)C17—O2i1.270 (4)
C2—C31.382 (5)C17—C181.498 (4)
C2—H20.9500C18—H18A0.9800
C3—C41.378 (5)C18—H18B0.9800
C3—H30.9500C18—H18C0.9800
C4—C51.375 (5)Cl1—Mo12.4146 (9)
C4—H40.9500Mo1—O12.096 (2)
C5—C61.385 (4)Mo1—O22.1124 (19)
C5—H50.9500Mo1—Mo1i2.1161 (9)
C6—H60.9500Mo1—P12.5278 (9)
C7—C121.393 (4)N1—P11.704 (2)
C7—C81.395 (4)N1—P1i1.704 (2)
C7—P11.817 (3)O2—C17i1.270 (4)
C8—C91.384 (4)O3—C191.251 (8)
C8—H80.9500O3—C221.255 (8)
C9—C101.365 (5)C19—C201.573 (8)
C9—H90.9500C19—H19A0.9900
C10—C111.386 (6)C19—H19B0.9900
C10—H100.9500C20—C211.573 (8)
C11—C121.386 (4)C20—H20A0.9900
C11—H110.9500C20—H20B0.9900
C12—H120.9500C21—C221.575 (8)
C13—C14i1.390 (4)C21—H21A0.9900
C13—C141.390 (4)C21—H21B0.9900
C13—N11.461 (5)C22—H22A0.9900
C14—C151.384 (5)C22—H22B0.9900
Cl2—C23—Cl3116.3 (16)O1—C17—C18118.7 (3)
Cl2—C23—H23A108.2O2i—C17—C18119.2 (3)
Cl3—C23—H23A108.2C17—C18—H18A109.5
Cl2—C23—H23B108.2C17—C18—H18B109.5
Cl3—C23—H23B108.2H18A—C18—H18B109.5
H23A—C23—H23B107.4C17—C18—H18C109.5
C2—C1—C6118.9 (3)H18A—C18—H18C109.5
C2—C1—P1123.4 (2)H18B—C18—H18C109.5
C6—C1—P1117.5 (2)O1—Mo1—O2175.75 (8)
C3—C2—C1120.0 (3)O1—Mo1—Mo1i91.72 (6)
C3—C2—H2120.0O2—Mo1—Mo1i90.85 (6)
C1—C2—H2120.0O1—Mo1—Cl189.78 (6)
C4—C3—C2120.6 (3)O2—Mo1—Cl186.16 (6)
C4—C3—H3119.7Mo1i—Mo1—Cl1110.39 (2)
C2—C3—H3119.7O1—Mo1—P185.87 (6)
C5—C4—C3120.2 (3)O2—Mo1—P197.15 (6)
C5—C4—H4119.9Mo1i—Mo1—P197.405 (18)
C3—C4—H4119.9Cl1—Mo1—P1151.98 (3)
C4—C5—C6119.9 (3)C13—N1—P1122.96 (10)
C4—C5—H5120.0C13—N1—P1i122.95 (10)
C6—C5—H5120.0P1—N1—P1i114.09 (19)
C5—C6—C1120.5 (3)C17—O1—Mo1117.50 (19)
C5—C6—H6119.8C17i—O2—Mo1117.26 (18)
C1—C6—H6119.8N1—P1—C1105.33 (12)
C12—C7—C8118.9 (3)N1—P1—C7104.61 (11)
C12—C7—P1119.5 (2)C1—P1—C7105.38 (14)
C8—C7—P1121.4 (2)N1—P1—Mo1113.53 (10)
C9—C8—C7119.8 (3)C1—P1—Mo1115.62 (10)
C9—C8—H8120.1C7—P1—Mo1111.43 (10)
C7—C8—H8120.1C19—O3—C22117.0 (9)
C10—C9—C8121.1 (3)O3—C19—C20103.9 (8)
C10—C9—H9119.4O3—C19—H19A111.0
C8—C9—H9119.4C20—C19—H19A111.0
C9—C10—C11119.8 (3)O3—C19—H19B111.0
C9—C10—H10120.1C20—C19—H19B111.0
C11—C10—H10120.1H19A—C19—H19B109.0
C12—C11—C10120.0 (3)C21—C20—C1999.7 (8)
C12—C11—H11120.0C21—C20—H20A111.8
C10—C11—H11120.0C19—C20—H20A111.8
C11—C12—C7120.4 (3)C21—C20—H20B111.8
C11—C12—H12119.8C19—C20—H20B111.8
C7—C12—H12119.8H20A—C20—H20B109.5
C14i—C13—C14119.4 (4)C20—C21—C2298.6 (7)
C14i—C13—N1120.3 (2)C20—C21—H21A112.0
C14—C13—N1120.3 (2)C22—C21—H21A112.0
C15—C14—C13119.6 (4)C20—C21—H21B112.0
C15—C14—H14120.2C22—C21—H21B112.0
C13—C14—H14120.2H21A—C21—H21B109.7
C16—C15—C14121.1 (4)O3—C22—C21108.2 (7)
C16—C15—H15119.5O3—C22—H22A110.1
C14—C15—H15119.5C21—C22—H22A110.1
C15i—C16—C15119.2 (5)O3—C22—H22B110.1
C15i—C16—H16120.4C21—C22—H22B110.1
C15—C16—H16120.4H22A—C22—H22B108.4
O1—C17—O2i122.1 (3)
C6—C1—C2—C30.8 (5)C13—N1—P1—C7−64.90 (10)
P1—C1—C2—C3176.0 (3)P1i—N1—P1—C7115.09 (10)
C1—C2—C3—C4−1.3 (6)C13—N1—P1—Mo1173.409 (15)
C2—C3—C4—C50.6 (6)P1i—N1—P1—Mo1−6.593 (15)
C3—C4—C5—C60.6 (6)C2—C1—P1—N1−83.1 (3)
C4—C5—C6—C1−1.1 (5)C6—C1—P1—N192.2 (3)
C2—C1—C6—C50.4 (5)C2—C1—P1—C727.2 (3)
P1—C1—C6—C5−175.1 (3)C6—C1—P1—C7−157.5 (2)
C12—C7—C8—C91.9 (5)C2—C1—P1—Mo1150.7 (2)
P1—C7—C8—C9175.9 (2)C6—C1—P1—Mo1−34.0 (3)
C7—C8—C9—C100.6 (5)C12—C7—P1—N1−31.0 (3)
C8—C9—C10—C11−1.8 (5)C8—C7—P1—N1155.1 (2)
C9—C10—C11—C120.5 (5)C12—C7—P1—C1−141.8 (2)
C10—C11—C12—C72.1 (5)C8—C7—P1—C144.3 (3)
C8—C7—C12—C11−3.3 (5)C12—C7—P1—Mo192.1 (2)
P1—C7—C12—C11−177.3 (2)C8—C7—P1—Mo1−81.8 (3)
C14i—C13—C14—C15−0.2 (3)O1—Mo1—P1—N1109.43 (7)
N1—C13—C14—C15179.8 (3)O2—Mo1—P1—N1−73.57 (7)
C13—C14—C15—C160.4 (6)Mo1i—Mo1—P1—N118.23 (4)
C14—C15—C16—C15i−0.2 (3)Cl1—Mo1—P1—N1−168.85 (5)
C14i—C13—N1—P1−74.23 (17)O1—Mo1—P1—C1−128.66 (13)
C14—C13—N1—P1105.77 (17)O2—Mo1—P1—C148.34 (13)
C14i—C13—N1—P1i105.77 (17)Mo1i—Mo1—P1—C1140.14 (11)
C14—C13—N1—P1i−74.23 (17)Cl1—Mo1—P1—C1−46.94 (13)
O2i—C17—O1—Mo10.6 (4)O1—Mo1—P1—C7−8.37 (12)
C18—C17—O1—Mo1−179.0 (2)O2—Mo1—P1—C7168.62 (11)
Mo1i—Mo1—O1—C174.7 (2)Mo1i—Mo1—P1—C7−99.57 (11)
Cl1—Mo1—O1—C17115.1 (2)Cl1—Mo1—P1—C773.34 (12)
P1—Mo1—O1—C17−92.6 (2)C22—O3—C19—C2037.3 (15)
Mo1i—Mo1—O2—C17i7.9 (2)O3—C19—C20—C21−32.7 (13)
Cl1—Mo1—O2—C17i−102.4 (2)C19—C20—C21—C2218.7 (10)
P1—Mo1—O2—C17i105.5 (2)C19—O3—C22—C21−23.9 (12)
C13—N1—P1—C145.93 (11)C20—C21—C22—O3−1.3 (9)
P1i—N1—P1—C1−134.07 (11)

Symmetry codes: (i) −x+2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2886).

References

  • Arnold, D. I., Cotton, F. A. & Kühn, F. E. (1996). Inorg. Chem.35, 4733-4737.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Cotton, F. A., Kühn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251-256.
  • Cotton, F. A., Murillo, C. A. & Walton, R. A. (2006). Multiple Bonds between Metal Atoms, 3rd ed. Berlin: Springer-Verlag.
  • Fei, Z., Scopelliti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.
  • Green, M. L. H., Parkin, G., Bashkin, J., Fail, J. & Prout, K. (1982). J. Chem. Soc. Dalton Trans. pp. 2519–2525.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-RED and X-AREA Stoe & Cie, Darmstadt, Germany.
  • Wöhl, A., Müller, W., Peulecke, N., Müller, B. H., Peitz, S., Heller, D. & Rosenthal, U. (2009). J. Mol. Catal. A Chem.297, 1–8.
  • Wu, Y.-Y., Chen, J.-D., Liou, L.-S. & Wang, J.-C. (1997). Inorg. Chim. Acta, 258, 193-199.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography