PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m447.
Published online 2009 March 28. doi:  10.1107/S1600536809010447
PMCID: PMC2968951

catena-Poly[[bis­(4-methyl­benzene­thiol­ato)cadium(II)]-μ-1,3-di-4-pyridylpropane]

Abstract

In the title compound, [Cd(C7H7S)2(C13H14N2)]n, the unique CdII ion, located on a twofold rotation axis, is coordinated by two S atoms and two N atoms in a slightly distorted tetra­hedral environment. Symmetry-related CdII ions are linked via bridging 1,3-di-4-pyridylpropane ligands, forming a zig-zag chain-structure parallel to [001]. In the crystal structure, there are weak intra­chain π–π stacking inter­actions between benzene rings, with a centroid–centroid distance of 3.825 (7) Å, and pairs of chains are inter­digitated with respect to the 4-methyl­benzene­thiol­ate groups.

Related literature

For background information on coordination polymers, see: James (2003 [triangle]); Wang et al. (2005 [triangle]); Cheng et al. (2007 [triangle]); Han & Zhou (2008 [triangle]). For information on the 1,3-bis­(4-pyrid­yl)propane ligand, see: Han et al. (2007 [triangle]); Carlucci et al. (2002 [triangle]). For the synthetic procedure, see: Dance et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m447-scheme1.jpg

Experimental

Crystal data

  • [Cd(C7H7S)2(C13H14N2)]
  • M r = 557.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m447-efi1.jpg
  • a = 11.922 (2) Å
  • b = 16.792 (3) Å
  • c = 12.862 (3) Å
  • β = 91.06 (3)°
  • V = 2574.5 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.03 mm−1
  • T = 298 K
  • 0.45 × 0.25 × 0.18 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.655, T max = 0.837
  • 12609 measured reflections
  • 2948 independent reflections
  • 2587 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.090
  • S = 1.09
  • 2948 reflections
  • 150 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.90 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010447/lh2791sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010447/lh2791Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province (Y4080435), the Natural Science Foundation of Ningbo Municipal (2007A610024) and the K.C. Wong Magna Fund of Ningbo University.

supplementary crystallographic information

Comment

The search for new crystalline coordination polymers is fueled by the use of such materials in catalysis, separations, magnetism, and optoelectronics (James, 2003). Recently, interest has been devoted to the entanglement of 1D coordination polymers resulting in the architectures of an overall higher dimensionality (Wang et al., 2005; Cheng et al., 2007). The organic ligand, 1,3-bis(4-pyridyl)propane (bpp), is a long and flexible multi-functional linker, which can adopt different conformations with respect to the relative orientations of the CH2 groups (Han et al., 2007; Carlucci et al., 2002). We have reported a 2-D interwoven network entangled from zigzag chains using the bpp ligand as building unit (Han & Zhou, 2008). In an attempt to synthesize further interwoven networks we have synthesized the one-dimensional polymer formed from Cd(SC6H4Me-4)2 and bpp and its crystal structure is reported herein.

The title compound, [Cd(SC6H4Me-4)2(bpp)]n, is a one-dimensional chain structure and the asymmetric unit is shown in Fig. 1. The unique CdII ion is coordinated by two S atoms and two N atoms adopting a slightly distorted tetrahedral coordination geometry. In the chain structure, there are weak π···π stacking interactions between two symmetry related benzene rings of the 4-methylbenzenethiolate groups, within the same chain. The centroid-to-centroid distance (Cg···Cgi) is 3.825 (7) Å (symmetry code: (i) -x, y, -z+1/2). The dihedral angle between two benzene rings is 3.2 (7)° (Fig. 2). Figure 3 shows part of the crystal structure of the title compound illustrating two interdigitated 1-D chains.

Experimental

Cd(SC6H4Me-4)2 was synthesized according to the literature (Dance et al., 1987). A mixture of Cd(SC6H4Me-4)2 (99.5 mg) and 1,3-bis(4-pyridyl)propane (50.1 mg) in DMF (6.0 g) solution was stirred for 30 min. The solution was allowed to stand at room temperature for 5 days. Colorless block crystals of the title complex were obtained and collected by filtration with a 30% yield.

Refinement

The unique H atom on C1 was located in a difference map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for phenyl and pyridyl H atoms, C—H = 0.96 Å and Uiso(H) =1.5Ueq(C) for methyl, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene.

Figures

Fig. 1.
The asymmetric unit of the title compound showing 30% probability ellipsoids.
Fig. 2.
Part of the 1-D chain structure of title complex with 30% probability ellipsoids.
Fig. 3.
Part of the crsytal structutre showing two interdigitated 1-D chains.

Crystal data

[Cd(C7H7S)2(C13H14N2)]F(000) = 1136
Mr = 557.03Dx = 1.437 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1774 reflections
a = 11.922 (2) Åθ = 3.2–27.5°
b = 16.792 (3) ŵ = 1.03 mm1
c = 12.862 (3) ÅT = 298 K
β = 91.06 (3)°Block, colorless
V = 2574.5 (9) Å30.45 × 0.25 × 0.18 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer2948 independent reflections
Radiation source: fine-focus sealed tube2587 reflections with I > 2σ(I)
graphiteRint = 0.046
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −15→15
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −21→21
Tmin = 0.655, Tmax = 0.837l = −16→14
12609 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0411P)2 + 2.0003P] where P = (Fo2 + 2Fc2)/3
2948 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.90 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.00000.295756 (15)0.25000.04791 (11)
S10.18408 (7)0.35512 (5)0.22501 (8)0.0677 (2)
N1−0.0143 (2)0.20104 (12)0.11914 (17)0.0485 (5)
C10.00000.1037 (2)−0.25000.0464 (8)
H10.065 (2)0.1374 (16)−0.243 (2)0.050 (8)*
C2−0.0111 (3)0.05267 (16)−0.1528 (2)0.0579 (7)
H2A−0.07990.0219−0.15790.070*
H2B0.05120.0156−0.14850.070*
C3−0.0126 (3)0.10235 (14)−0.05565 (19)0.0486 (6)
C4−0.1082 (3)0.14257 (19)−0.0269 (2)0.0615 (7)
H4A−0.17410.1373−0.06620.074*
C5−0.1060 (3)0.19035 (19)0.0598 (3)0.0607 (8)
H5A−0.17160.21650.07790.073*
C60.0779 (3)0.16210 (17)0.0914 (2)0.0545 (7)
H6A0.14250.16820.13220.065*
C70.0822 (3)0.11328 (16)0.0054 (2)0.0551 (7)
H7A0.14880.0879−0.01130.066*
C80.1615 (2)0.45217 (16)0.2756 (2)0.0511 (6)
C90.1277 (3)0.46512 (18)0.3764 (2)0.0589 (7)
H9A0.11520.42180.41970.071*
C100.1120 (3)0.54131 (18)0.4140 (3)0.0621 (7)
H10A0.08980.54820.48230.075*
C110.1812 (3)0.51806 (19)0.2143 (2)0.0643 (8)
H11A0.20560.51140.14670.077*
C120.1646 (3)0.59429 (19)0.2530 (3)0.0686 (9)
H12A0.17820.63790.21050.082*
C130.1286 (3)0.60699 (18)0.3527 (3)0.0626 (8)
C140.1075 (4)0.6900 (2)0.3939 (4)0.0969 (14)
H14A0.08360.68670.46460.145*
H14B0.05020.71520.35220.145*
H14C0.17540.72050.39090.145*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.05340 (18)0.04305 (16)0.04712 (17)0.000−0.00332 (12)0.000
S10.0523 (4)0.0585 (4)0.0927 (6)−0.0030 (3)0.0129 (4)−0.0238 (4)
N10.0573 (14)0.0480 (12)0.0402 (11)−0.0044 (10)−0.0019 (10)0.0000 (9)
C10.059 (2)0.0403 (18)0.0402 (18)0.000−0.0002 (17)0.000
C20.089 (2)0.0427 (13)0.0418 (13)−0.0028 (14)−0.0010 (14)0.0013 (11)
C30.0688 (17)0.0394 (12)0.0375 (12)−0.0064 (11)0.0005 (12)0.0058 (9)
C40.0559 (17)0.077 (2)0.0511 (16)−0.0052 (14)−0.0066 (14)−0.0122 (14)
C50.0511 (16)0.076 (2)0.0546 (17)−0.0011 (14)0.0006 (14)−0.0139 (14)
C60.0584 (16)0.0524 (15)0.0521 (15)0.0013 (13)−0.0132 (13)−0.0013 (12)
C70.0625 (17)0.0493 (14)0.0533 (16)0.0088 (13)−0.0032 (14)0.0000 (12)
C80.0407 (13)0.0525 (14)0.0600 (16)−0.0043 (11)−0.0002 (12)−0.0093 (12)
C90.0627 (18)0.0524 (16)0.0621 (17)−0.0018 (13)0.0115 (15)0.0004 (13)
C100.0635 (18)0.0632 (18)0.0601 (17)−0.0012 (14)0.0091 (15)−0.0109 (14)
C110.069 (2)0.0673 (19)0.0569 (17)−0.0094 (15)0.0043 (15)−0.0023 (14)
C120.075 (2)0.0543 (17)0.076 (2)−0.0070 (15)0.0042 (18)0.0067 (15)
C130.0561 (17)0.0512 (16)0.080 (2)−0.0032 (13)0.0031 (16)−0.0113 (14)
C140.098 (3)0.058 (2)0.136 (4)0.0021 (19)0.023 (3)−0.020 (2)

Geometric parameters (Å, °)

Cd1—N12.320 (2)C6—C71.379 (4)
Cd1—N1i2.320 (2)C6—H6A0.9300
Cd1—S12.4370 (9)C7—H7A0.9300
Cd1—S1i2.4370 (9)C8—C111.381 (4)
S1—C81.777 (3)C8—C91.383 (4)
N1—C61.333 (4)C9—C101.381 (4)
N1—C51.334 (4)C9—H9A0.9300
C1—C2ii1.523 (3)C10—C131.372 (4)
C1—C21.523 (3)C10—H10A0.9300
C1—H10.97 (3)C11—C121.389 (4)
C2—C31.503 (4)C11—H11A0.9300
C2—H2A0.9700C12—C131.376 (5)
C2—H2B0.9700C12—H12A0.9300
C3—C71.377 (4)C13—C141.513 (4)
C3—C41.381 (4)C14—H14A0.9600
C4—C51.373 (4)C14—H14B0.9600
C4—H4A0.9300C14—H14C0.9600
C5—H5A0.9300
N1—Cd1—N1i93.43 (11)N1—C6—H6A118.3
N1—Cd1—S1103.83 (7)C7—C6—H6A118.3
N1i—Cd1—S1108.77 (7)C3—C7—C6119.6 (3)
N1—Cd1—S1i108.77 (7)C3—C7—H7A120.2
N1i—Cd1—S1i103.83 (7)C6—C7—H7A120.2
S1—Cd1—S1i131.71 (4)C11—C8—C9117.7 (3)
C8—S1—Cd1100.62 (9)C11—C8—S1119.9 (2)
C6—N1—C5116.9 (2)C9—C8—S1122.4 (2)
C6—N1—Cd1118.72 (19)C10—C9—C8121.1 (3)
C5—N1—Cd1123.8 (2)C10—C9—H9A119.4
C2ii—C1—C2111.6 (3)C8—C9—H9A119.4
C2ii—C1—H1109.0 (17)C13—C10—C9121.5 (3)
C2—C1—H1109.5 (16)C13—C10—H10A119.3
C3—C2—C1111.9 (2)C9—C10—H10A119.3
C3—C2—H2A109.2C8—C11—C12120.5 (3)
C1—C2—H2A109.2C8—C11—H11A119.8
C3—C2—H2B109.2C12—C11—H11A119.8
C1—C2—H2B109.2C13—C12—C11121.7 (3)
H2A—C2—H2B107.9C13—C12—H12A119.1
C7—C3—C4117.1 (2)C11—C12—H12A119.1
C7—C3—C2121.7 (3)C10—C13—C12117.5 (3)
C4—C3—C2121.1 (3)C10—C13—C14120.9 (3)
C5—C4—C3120.0 (3)C12—C13—C14121.7 (3)
C5—C4—H4A120.0C13—C14—H14A109.5
C3—C4—H4A120.0C13—C14—H14B109.5
N1—C5—C4123.1 (3)H14A—C14—H14B109.5
N1—C5—H5A118.5C13—C14—H14C109.5
C4—C5—H5A118.5H14A—C14—H14C109.5
N1—C6—C7123.3 (3)H14B—C14—H14C109.5

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, y, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2791).

References

  • Carlucci, L., Ciani, G., Proserpio, D.-M. & Rizzato, S. (2002). Coord. Chem. Rev.4, 121–129.
  • Cheng, A.-L., Liu, N., Yue, Y.-F., Jiang, Y.-W., Gao, E.-Q., Yan, C.-H. & He, M.-Y. (2007). Chem. Commun. pp. 407–409. [PubMed]
  • Dance, I. G., Garbutt, R. G., Craig, D. C. & Scudder, M. L. (1987). Inorg. Chem.26, 4057–4064.
  • Han, L., Valle, H. & Bu, X.-H. (2007). Inorg. Chem.46, 1511–1513. [PubMed]
  • Han, L. & Zhou, Y. (2008). Inorg. Chem. Commun.11, 385–387.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • James, S. L. (2003). Chem. Soc. Rev.32, 276–288. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, X.-L., Qin, C., Wang, E.-B., Li, Y.-G., Su, Z.-M., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed.44, 5824–5827. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography