PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o744.
Published online 2009 March 14. doi:  10.1107/S1600536809007004
PMCID: PMC2968937

Bis(2-amino­thia­zolium) succinate succinic acid

Abstract

In the title compound, 2C3H5N2S+·C4H4O4 2−·C4H6O4, the thia­zolium ring is almost planar, with the maximum deviation from planarity being 0.0056 (8) Å for the C atom carrying the amine substituent. The N atom of the 2-amino­thia­zole mol­ecule is protonated. Both the anion and the acid lie across inversion centres. The crystal packing is consolidated by inter­molecular O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds. Mol­ecules are stacked down the b axis.

Related literature

For the structure of 2-amino­thia­zole, see: Caranoni & Reboul (1982 [triangle]). For applications of 2-amino­thia­zole, see: Saarnivaara & Matilla (1974 [triangle]); Windholz (2001 [triangle]). For the structure of succinic acid, see: Gopalan et al. (2000 [triangle]); Leviel et al. (1981 [triangle]). For applications of succinic acid, see: Sauer et al. (2008 [triangle]); Song & Lee (2006 [triangle]); Zeikus et al. (1999 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o744-scheme1.jpg

Experimental

Crystal data

  • 2C3H5N2S+·C4H4O4 2−·C4H6O4
  • M r = 436.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o744-efi1.jpg
  • a = 10.1680 (2) Å
  • b = 5.1012 (1) Å
  • c = 18.3850 (4) Å
  • β = 105.961 (1)°
  • V = 916.85 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 100 K
  • 0.58 × 0.42 × 0.32 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.826, T max = 0.897
  • 16689 measured reflections
  • 3691 independent reflections
  • 3442 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.077
  • S = 1.04
  • 3691 reflections
  • 167 parameters
  • All H-atom parameters refined
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007004/sj2582sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007004/sj2582Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No.1001/PFIZIK/811012.

supplementary crystallographic information

Comment

2-Aminothiazole derivatives have shown heribicidal, anti-inflammatory, anti-microbial and antiparasitic activities (Saarnivaara & Matilla, 1974). 2-Aminothiazole is listed as a thyroid inhibitor (Windholz, 2001). The orthorhombic form of 2-amino-1,3-thiazole has been reported (Caranoni & Reboul, 1982). Succinic acid is a dicarboxylic acid and is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has been reported (Gopalan et al., 2000; Leviel et al. 1981). Due to all these important properties, the title compound (I) has been synthesized and is reported here.

The asymmetric unit of (I) (Fig. 1) contains one molecule of protonated 2-aminothiazole, a half molecule of succinate and a half molecule of succinic acid. The anion and the acid lie across different inversion centres [symmetry codes (i) -x + 1, -y + 2, -z and (ii) -x + 2, -y + 2, -z respectively]. The thiazolium ring is planar with the maximum deviation from planarity being 0.0056 (8)Å for atom C3. The ring nitrogen of the 2-aminothiazole molecule is protonated thereby leading to a widening of the corresponding internal angle (C2–N1–C3) of the thiazolium ring to 113.99 (6)° [which is 109.4 (5)° in the unprotonated form of 2-aminothiazole] and an increase in the bond lengths of N1–C3 to 1.334 (9)Å and N1–C2 to 1.387 (9)Å [which are 1.298 (6)Å and 1.375 (6)Å respectively in its uncomplexed form] (Caranoni & Reboul, 1982). An increase in the C1–S1–C3 bond angle to 90.47 (3)° [which is 88.6 (3)° in the unprotonated form] and a decrease in the S1–C3–N1 bond angle to 111.38 (5)° [which is 114.9 (5)° in the uncomplexed form of 2-aminothiazole] (Caranoni & Reboul, 1982) are also observed.

The bond lengths and bond angles of the succinate and succinic acid are found to have normal values (Gopalan et al., 2000; Leviel & Auvert, 1981). The crystal packing is consolidated by O—H···O, N—H···O and C—H···O intermolecular hydrogen bonds (Table 1) together with intermolecular [O—Oi = 2.5820 (8) Å; O—Nii-iii = 2.6868 (8) to 2.8297 (9) Å, short contacts [symmetry code: (i) x,-1 + y,z; (ii) 3/2 - x,1/2 + y,1/2 - z; (iii) x,1 + y,z]. Molecules are stacked down the b axis(Fig.2).

Experimental

2- Aminothiazole (0.100 g, 1 mmol) and succinic acid (0.118 g, 1 mmol) were dissolved in ethanol (25 ml) in a 1:1 molar ratio. The clear brown solution obtained was refluxed for 6 h at a temperature of 323 K. Brown coloured crystals were harvested after two weeks on slow evaporation of the solvent.

Refinement

All the hydrogen atoms were located from the Fourier map and were allowed to refine freely with isotropic displacement parameters.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. [symmetry operators used to generate equivalent atoms are (i) -x + 1, -y + 2, -z and (ii) -x + 2, -y + 2, -z for the anion and ...
Fig. 2.
The crystal packing of the title compound, viewed along the b axis. Dashed lines indicate the hydrogen bonding.

Crystal data

2C3H5N2S+·C4H4O42·C4H6O4F(000) = 456
Mr = 436.46Dx = 1.581 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9994 reflections
a = 10.1680 (2) Åθ = 2.3–40.1°
b = 5.1012 (1) ŵ = 0.34 mm1
c = 18.3850 (4) ÅT = 100 K
β = 105.961 (1)°Block, yellow
V = 916.85 (3) Å30.58 × 0.42 × 0.32 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3691 independent reflections
Radiation source: fine-focus sealed tube3442 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 34.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −16→16
Tmin = 0.826, Tmax = 0.897k = −7→7
16689 measured reflectionsl = −28→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.077All H-atom parameters refined
S = 1.04w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2556P] where P = (Fo2 + 2Fc2)/3
3691 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.398521 (18)0.38496 (4)0.154349 (10)0.01603 (6)
O10.64045 (5)0.89655 (11)0.12963 (3)0.01367 (10)
O20.77343 (5)1.19344 (12)0.09559 (3)0.01562 (10)
O30.80012 (6)0.57645 (12)0.00894 (3)0.01703 (11)
O40.99583 (6)0.66022 (12)0.09808 (3)0.01646 (11)
N10.52407 (6)0.60443 (12)0.27794 (3)0.01361 (11)
N20.63526 (6)0.22575 (14)0.25269 (4)0.01565 (12)
C10.32820 (7)0.66562 (16)0.18253 (4)0.01749 (13)
C20.40776 (7)0.75502 (15)0.24905 (4)0.01599 (13)
C30.53433 (7)0.39842 (14)0.23509 (4)0.01261 (12)
C40.66461 (6)1.05440 (14)0.08264 (4)0.01101 (11)
C50.56100 (7)1.09079 (14)0.00653 (4)0.01307 (12)
C60.91584 (7)0.70771 (13)0.03682 (4)0.01173 (11)
C70.93722 (7)0.91684 (14)−0.01673 (4)0.01291 (12)
H10.2400 (13)0.731 (3)0.1506 (7)0.027 (3)*
H20.3948 (13)0.900 (2)0.2779 (7)0.023 (3)*
H7A0.8557 (13)1.025 (3)−0.0314 (7)0.023 (3)*
H7B0.9449 (13)0.826 (3)−0.0630 (7)0.025 (3)*
H1N20.7022 (15)0.248 (3)0.2933 (8)0.035 (4)*
H2N20.6384 (13)0.100 (3)0.2197 (7)0.025 (3)*
H1C50.6093 (14)1.070 (3)−0.0333 (8)0.030 (3)*
H2C50.5330 (13)1.280 (3)0.0047 (8)0.030 (3)*
H1N10.5877 (14)0.640 (3)0.3188 (8)0.031 (3)*
H1O30.7940 (17)0.447 (4)0.0401 (9)0.052 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01505 (8)0.01672 (9)0.01227 (8)−0.00239 (5)−0.00303 (6)0.00025 (5)
O10.0141 (2)0.0152 (2)0.0103 (2)−0.00308 (17)0.00095 (16)0.00264 (16)
O20.0127 (2)0.0175 (2)0.0136 (2)−0.00582 (18)−0.00159 (17)0.00353 (18)
O30.0150 (2)0.0181 (3)0.0151 (2)−0.00693 (18)−0.00061 (18)0.00485 (19)
O40.0145 (2)0.0178 (2)0.0146 (2)−0.00236 (18)−0.00011 (18)0.00380 (19)
N10.0128 (2)0.0147 (3)0.0116 (2)0.00017 (19)0.00047 (19)−0.00062 (19)
N20.0141 (2)0.0176 (3)0.0128 (2)0.0022 (2)−0.0003 (2)−0.0030 (2)
C10.0137 (3)0.0171 (3)0.0189 (3)−0.0001 (2)−0.0001 (2)0.0044 (3)
C20.0141 (3)0.0152 (3)0.0179 (3)0.0014 (2)0.0031 (2)0.0022 (2)
C30.0119 (3)0.0143 (3)0.0102 (2)−0.0016 (2)0.0008 (2)0.0004 (2)
C40.0106 (2)0.0116 (3)0.0097 (2)−0.0009 (2)0.00098 (19)0.0002 (2)
C50.0115 (2)0.0153 (3)0.0101 (2)−0.0035 (2)−0.0009 (2)0.0027 (2)
C60.0113 (2)0.0111 (3)0.0127 (3)−0.0006 (2)0.0032 (2)0.0002 (2)
C70.0129 (3)0.0129 (3)0.0122 (3)−0.0022 (2)0.0023 (2)0.0018 (2)

Geometric parameters (Å, °)

S1—C31.7285 (7)N2—H2N20.888 (13)
S1—C11.7416 (9)C1—C21.3468 (11)
O1—C41.2538 (8)C1—H10.986 (13)
O2—C41.2802 (8)C2—H20.941 (13)
O3—C61.3281 (8)C4—C51.5139 (9)
O3—H1O30.887 (18)C5—C5i1.5135 (14)
O4—C61.2185 (8)C5—H1C50.993 (14)
N1—C31.3346 (9)C5—H2C51.003 (14)
N1—C21.3877 (9)C6—C71.5075 (10)
N1—H1N10.864 (14)C7—C7ii1.5153 (14)
N2—C31.3233 (9)C7—H7A0.970 (13)
N2—H1N20.868 (15)C7—H7B0.989 (13)
C3—S1—C190.47 (3)O1—C4—C5119.82 (6)
C6—O3—H1O3109.7 (10)O2—C4—C5116.75 (6)
C3—N1—C2113.99 (6)C5i—C5—C4113.78 (7)
C3—N1—H1N1121.0 (9)C5i—C5—H1C5111.6 (8)
C2—N1—H1N1125.0 (9)C4—C5—H1C5108.0 (8)
C3—N2—H1N2119.6 (10)C5i—C5—H2C5111.7 (8)
C3—N2—H2N2118.9 (8)C4—C5—H2C5105.5 (8)
H1N2—N2—H2N2121.0 (13)H1C5—C5—H2C5105.7 (11)
C2—C1—S1110.81 (6)O4—C6—O3123.50 (6)
C2—C1—H1130.3 (8)O4—C6—C7124.39 (6)
S1—C1—H1118.9 (8)O3—C6—C7112.10 (6)
C1—C2—N1113.33 (7)C6—C7—C7ii112.82 (7)
C1—C2—H2129.5 (8)C6—C7—H7A108.6 (7)
N1—C2—H2117.2 (8)C7ii—C7—H7A110.8 (8)
N2—C3—N1124.12 (6)C6—C7—H7B106.9 (8)
N2—C3—S1124.49 (5)C7ii—C7—H7B110.7 (7)
N1—C3—S1111.38 (5)H7A—C7—H7B106.8 (10)
O1—C4—O2123.42 (6)
C3—S1—C1—C20.33 (6)C1—S1—C3—N1−0.78 (6)
S1—C1—C2—N10.18 (9)O1—C4—C5—C5i−4.29 (11)
C3—N1—C2—C1−0.80 (9)O2—C4—C5—C5i176.67 (8)
C2—N1—C3—N2−178.46 (7)O4—C6—C7—C7ii−5.84 (12)
C2—N1—C3—S11.04 (8)O3—C6—C7—C7ii175.31 (7)
C1—S1—C3—N2178.72 (7)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1iii0.868 (15)1.974 (15)2.8156 (9)163.0 (14)
N2—H2N2···O1iv0.889 (14)1.959 (13)2.8297 (9)165.7 (13)
N1—H1N1···O2iii0.865 (14)1.823 (14)2.6868 (8)176.2 (15)
O3—H1O3···O2iv0.888 (19)1.696 (19)2.5820 (8)176.5 (19)
C1—H1···O4v0.985 (13)2.431 (14)3.3086 (10)148.2 (12)

Symmetry codes: (iii) −x+3/2, y−1/2, −z+1/2; (iv) x, y−1, z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2582).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caranoni, C. & Reboul, J. P. (1982). Acta Cryst. B38, 1255–1259.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Gopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct.521, 97–106.
  • Leviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185–2189.
  • Saarnivaara, L. & Matilla, K. J. (1974). Psychopharmacology (Berl), 35, 221–236. [PubMed]
  • Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol.26, 100–108. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, H. & Lee, S. Y. (2006). Enzyme Microb. Technol.39, 352–361.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Windholz, M. (2001). The Merck Index, 13th ed. Boca Raton, USA: Merck & Co. Inc.
  • Zeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol.51, 545–552.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography