PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m435.
Published online 2009 March 25. doi:  10.1107/S1600536809009003
PMCID: PMC2968934

Bis[μ-N′-isobutyryl-1-oxidonaphtha­lene-2-carbohydrazidato(3-)]dipyridine­tricopper(II)

Abstract

The complete mol­ecule of the title complex, [Cu3(C15H13N2O3)2(C5H5N)2], is generated by crystallographic twofold symmetry, with the central Cu atom lying on the rotation axis: it is coordinated by two N,O-bidentate ligands in a trans-CuN2O2 distorted square-planar arrangement. The other Cu atom is coordinated by an N,O,O′-tridentate ligand and a pyridine mol­ecule in a distorted trans-CuN2O2 arrangement. In the crystal structure, a C—H(...)π inter­action occurs.

Related literature

For related structures, see: Patole et al. (2003 [triangle]); Pouralimardan et al. (2007 [triangle]). For background on C—H(...)π inter­actions, see: Nishio (2004 [triangle]); Saalfrank & Bernt (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m435-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C15H13N2O3)2(C5H5N)2]
  • M r = 887.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m435-efi1.jpg
  • a = 23.661 (2) Å
  • b = 13.0521 (18) Å
  • c = 13.3142 (15) Å
  • β = 113.684 (2)°
  • V = 3765.5 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.74 mm−1
  • T = 298 K
  • 0.37 × 0.35 × 0.31 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.566, T max = 0.615 (expected range = 0.537–0.584)
  • 9477 measured reflections
  • 3310 independent reflections
  • 2319 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.135
  • S = 1.00
  • 3310 reflections
  • 251 parameters
  • H-atom parameters constrained
  • Δρmax = 0.82 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009003/hb2917sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009003/hb2917Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China (grant No. 20671048).

supplementary crystallographic information

Comment

A large number of aroylhydrazine complexes have been prepared and studied due to their diverse molecular architectures and quite interesting chemical properties (Patole et al., 2003; Pouralimardan et al., 2007). However, researches on the copper(II) complexes with N-isobutyryl-1-hydroxy-2-naphthalenecarbohydrazide have not reported. So we have synthesized a new complex, (I), (Fig. 1), which has been characterized by X-ray diffraction and elemental analysis. The molecule of (I) contains three copper(II), two ligand molecules, and two pyridine molecules. Both copper centres adopt distorted square planar trans-CuN2O2 arrangements. The triple-deprotonated N-isobutyryl-1-hydroxy-2-naphthalenecarbohydrazide bridges the metal ions using a hydrazide N—N group and formed the trinuclear copper complex. In the crystal packing, the complex molecules are linked into two-dimensional network by intermolecular C—H···π interactions (Fig. 2) (Saalfrank & Bernt, 1998; Nishio, 2004).

Experimental

Isobutyric anhydride (0.632 g, 4 mmol) and 1-hydroxy-2-naphthalenecarbohydrazide (0.808 g, 4 mmol) were added to 40 ml of chloroform at ice-water bath. The reaction mixture was slowly warmed to room temperature and stirred for 24 h. After overnight refrigeration, the resulting white precipitate was filtered and rinsed with chloroform and diethyl ether (1.02 g, 93.57% yield). A solution of CuNO3(0.04 g,0.2 mmol) in methanol (10 ml) was added to a mixture of N-isobutyryl-1-hydroxy-2-naphthalenecarbohydrazide (0.055 g, 0.2 mmol) and sodium methylate (0.0324 g, 0.6 mmol) in pyridine (10 ml). A green solution was obtained after refluxing for 3 h. After being filtrated, dimethyl ether was slowly diffused into the filtrate, and green blocks of (I) were obtained after two weeks. Elemental analysis calculated for C40H36N6O6Cu3: C, 54.09; H, 4.05; O, 10.78; N, 9.43. Found (%): C, 54.12; H, 4.06; O, 10.82; N, 9.47

Refinement

The C-bound H atoms were positioned with idealized geometry (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I) showing 40% probability displacement ellipsoids. H atoms have been omitted for clarity. Symmetry code: (i) 1–x, y, 1/2–z.
Fig. 2.
View of the two-dimensional network structure in (I). Intermolecular C—H···π are shown as dashed lines. Most of H atoms are omitted.

Crystal data

[Cu3(C15H13N2O3)2(C5H5N)2]F(000) = 1812
Mr = 887.37Dx = 1.565 Mg m3Dm = 1.565 Mg m3Dm measured by not measured
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3140 reflections
a = 23.661 (2) Åθ = 2.7–26.3°
b = 13.0521 (18) ŵ = 1.74 mm1
c = 13.3142 (15) ÅT = 298 K
β = 113.684 (2)°Block, green
V = 3765.5 (7) Å30.37 × 0.35 × 0.31 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer3310 independent reflections
Radiation source: fine-focus sealed tube2319 reflections with I > 2σ(I)
graphiteRint = 0.050
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Siemens, 1996)h = −28→27
Tmin = 0.566, Tmax = 0.615k = −14→15
9477 measured reflectionsl = −13→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.079P)2 + 4.0071P] where P = (Fo2 + 2Fc2)/3
3310 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = −0.33 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.86302 (6)0.25000.0410 (2)
Cu20.68569 (2)0.80745 (4)0.23216 (4)0.0404 (2)
N10.62147 (15)0.8496 (3)0.2723 (3)0.0401 (8)
N20.56137 (15)0.8380 (3)0.1900 (3)0.0425 (9)
N30.74587 (15)0.7504 (3)0.1787 (3)0.0386 (8)
O10.57183 (12)0.8896 (2)0.3816 (2)0.0446 (7)
O20.74777 (12)0.8431 (2)0.3698 (2)0.0442 (7)
O30.61596 (13)0.7851 (3)0.0920 (2)0.0523 (8)
C10.62281 (18)0.8758 (3)0.3692 (3)0.0363 (9)
C20.73934 (18)0.8742 (3)0.4567 (3)0.0361 (9)
C30.68203 (18)0.8912 (3)0.4623 (3)0.0341 (9)
C40.68036 (19)0.9281 (3)0.5618 (3)0.0399 (10)
H40.64210.93860.56450.048*
C50.7314 (2)0.9484 (3)0.6518 (3)0.0440 (11)
H50.72780.97330.71440.053*
C60.7909 (2)0.9322 (3)0.6522 (3)0.0421 (10)
C70.79500 (19)0.8936 (3)0.5546 (3)0.0398 (10)
C80.85377 (19)0.8776 (4)0.5545 (4)0.0503 (11)
H80.85700.85220.49190.060*
C90.9059 (2)0.8990 (5)0.6448 (4)0.0674 (15)
H90.94430.88850.64260.081*
C100.9026 (2)0.9367 (4)0.7415 (4)0.0655 (15)
H100.93850.95070.80290.079*
C110.8464 (2)0.9522 (4)0.7439 (4)0.0559 (13)
H110.84430.97670.80800.067*
C120.56432 (19)0.8035 (4)0.0990 (4)0.0451 (11)
C130.5056 (2)0.7872 (4)−0.0027 (4)0.0548 (13)
H130.47030.79440.01760.066*
C140.5046 (3)0.6793 (5)−0.0479 (5)0.090 (2)
H14A0.53180.6765−0.08540.135*
H14B0.46340.6627−0.09820.135*
H14C0.51800.63100.01140.135*
C150.5004 (3)0.8681 (5)−0.0879 (5)0.0862 (19)
H15A0.50840.9344−0.05390.129*
H15B0.45950.8668−0.14490.129*
H15C0.52990.8541−0.11880.129*
C160.7284 (2)0.6777 (3)0.0995 (3)0.0414 (10)
H160.68720.65770.06890.050*
C170.7684 (2)0.6324 (3)0.0624 (4)0.0468 (11)
H170.75480.58220.00840.056*
C180.8288 (2)0.6624 (4)0.1064 (4)0.0585 (13)
H180.85710.63240.08290.070*
C190.8476 (2)0.7379 (5)0.1861 (4)0.0604 (13)
H190.88830.76050.21600.072*
C200.8046 (2)0.7787 (4)0.2200 (4)0.0489 (11)
H200.81740.82850.27450.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0270 (4)0.0562 (5)0.0400 (4)0.0000.0138 (3)0.000
Cu20.0282 (3)0.0537 (4)0.0391 (3)−0.0004 (2)0.0133 (2)−0.0070 (2)
N10.0243 (17)0.058 (2)0.0350 (19)−0.0019 (16)0.0083 (15)−0.0053 (17)
N20.0269 (18)0.062 (2)0.0371 (19)−0.0036 (17)0.0110 (16)−0.0097 (18)
N30.0349 (19)0.044 (2)0.0392 (19)0.0012 (16)0.0175 (16)−0.0024 (17)
O10.0286 (15)0.0644 (19)0.0435 (17)−0.0017 (14)0.0172 (13)−0.0100 (15)
O20.0308 (15)0.0602 (19)0.0417 (17)−0.0003 (14)0.0146 (13)−0.0083 (15)
O30.0291 (16)0.088 (2)0.0386 (17)0.0002 (16)0.0123 (13)−0.0135 (16)
C10.031 (2)0.039 (2)0.041 (2)−0.0013 (18)0.0161 (18)−0.0011 (19)
C20.034 (2)0.032 (2)0.040 (2)−0.0022 (17)0.0121 (18)0.0006 (18)
C30.029 (2)0.034 (2)0.037 (2)−0.0010 (17)0.0120 (17)−0.0024 (18)
C40.039 (2)0.042 (2)0.040 (2)−0.0004 (19)0.016 (2)−0.0016 (19)
C50.057 (3)0.041 (2)0.034 (2)−0.003 (2)0.017 (2)−0.0002 (19)
C60.046 (3)0.032 (2)0.041 (2)−0.0017 (19)0.011 (2)0.0039 (19)
C70.040 (2)0.032 (2)0.043 (2)−0.0017 (18)0.013 (2)0.0008 (19)
C80.034 (2)0.059 (3)0.053 (3)0.002 (2)0.012 (2)−0.008 (2)
C90.037 (3)0.089 (4)0.066 (3)0.001 (3)0.009 (3)−0.006 (3)
C100.041 (3)0.072 (4)0.058 (3)−0.002 (3)−0.007 (2)−0.004 (3)
C110.057 (3)0.054 (3)0.043 (3)−0.003 (2)0.006 (2)−0.002 (2)
C120.031 (2)0.064 (3)0.040 (2)−0.001 (2)0.0130 (19)−0.001 (2)
C130.031 (2)0.088 (4)0.038 (2)0.001 (2)0.008 (2)−0.009 (3)
C140.078 (4)0.082 (4)0.070 (4)−0.011 (3)−0.012 (3)−0.016 (3)
C150.074 (4)0.084 (4)0.064 (4)−0.006 (3)−0.009 (3)0.004 (3)
C160.042 (2)0.038 (2)0.044 (2)−0.0023 (19)0.018 (2)0.001 (2)
C170.056 (3)0.040 (3)0.046 (3)0.004 (2)0.022 (2)−0.002 (2)
C180.057 (3)0.070 (3)0.055 (3)0.024 (3)0.031 (3)0.002 (3)
C190.035 (3)0.089 (4)0.056 (3)0.005 (3)0.017 (2)−0.003 (3)
C200.035 (2)0.062 (3)0.047 (3)0.000 (2)0.014 (2)−0.008 (2)

Geometric parameters (Å, °)

Cu1—O11.920 (3)C8—C91.361 (6)
Cu1—O1i1.920 (3)C8—H80.9300
Cu1—N21.946 (3)C9—C101.409 (7)
Cu1—N2i1.946 (3)C9—H90.9300
Cu2—N11.884 (3)C10—C111.360 (7)
Cu2—O21.890 (3)C10—H100.9300
Cu2—O31.953 (3)C11—H110.9300
Cu2—N31.975 (3)C12—C131.516 (6)
N1—C11.323 (5)C13—C151.518 (8)
N1—N21.412 (5)C13—C141.529 (8)
N2—C121.320 (5)C13—H130.9800
N3—C201.326 (5)C14—H14A0.9600
N3—C161.354 (5)C14—H14B0.9600
O1—C11.294 (5)C14—H14C0.9600
O2—C21.315 (5)C15—H15A0.9600
O3—C121.285 (5)C15—H15B0.9600
C1—C31.465 (5)C15—H15C0.9600
C2—C31.405 (5)C16—C171.365 (6)
C2—C71.455 (6)C16—H160.9300
C3—C41.425 (6)C17—C181.367 (7)
C4—C51.342 (6)C17—H170.9300
C4—H40.9300C18—C191.384 (7)
C5—C61.423 (6)C18—H180.9300
C5—H50.9300C19—C201.374 (6)
C6—C111.412 (6)C19—H190.9300
C6—C71.433 (6)C20—H200.9300
C7—C81.406 (6)
O1—Cu1—O1i159.21 (19)C7—C8—H8119.5
O1—Cu1—N282.65 (13)C8—C9—C10121.0 (5)
O1i—Cu1—N2100.87 (13)C8—C9—H9119.5
O1—Cu1—N2i100.87 (13)C10—C9—H9119.5
O1i—Cu1—N2i82.65 (13)C11—C10—C9119.2 (4)
N2—Cu1—N2i160.7 (2)C11—C10—H10120.4
N1—Cu2—O293.11 (13)C9—C10—H10120.4
N1—Cu2—O381.17 (13)C10—C11—C6122.0 (5)
O2—Cu2—O3173.00 (13)C10—C11—H11119.0
N1—Cu2—N3172.94 (14)C6—C11—H11119.0
O2—Cu2—N392.88 (13)O3—C12—N2122.2 (4)
O3—Cu2—N393.10 (13)O3—C12—C13117.8 (4)
C1—N1—N2114.0 (3)N2—C12—C13120.0 (4)
C1—N1—Cu2130.2 (3)C12—C13—C15109.9 (4)
N2—N1—Cu2115.1 (3)C12—C13—C14110.1 (4)
C12—N2—N1109.9 (3)C15—C13—C14111.2 (5)
C12—N2—Cu1139.2 (3)C12—C13—H13108.5
N1—N2—Cu1110.4 (2)C15—C13—H13108.5
C20—N3—C16117.3 (4)C14—C13—H13108.5
C20—N3—Cu2122.2 (3)C13—C14—H14A109.5
C16—N3—Cu2120.4 (3)C13—C14—H14B109.5
C1—O1—Cu1112.8 (3)H14A—C14—H14B109.5
C2—O2—Cu2126.6 (3)C13—C14—H14C109.5
C12—O3—Cu2111.4 (3)H14A—C14—H14C109.5
O1—C1—N1120.1 (4)H14B—C14—H14C109.5
O1—C1—C3119.8 (4)C13—C15—H15A109.5
N1—C1—C3120.1 (3)C13—C15—H15B109.5
O2—C2—C3125.9 (4)H15A—C15—H15B109.5
O2—C2—C7116.0 (4)C13—C15—H15C109.5
C3—C2—C7118.1 (4)H15A—C15—H15C109.5
C2—C3—C4119.4 (4)H15B—C15—H15C109.5
C2—C3—C1123.3 (4)N3—C16—C17123.1 (4)
C4—C3—C1117.3 (3)N3—C16—H16118.5
C5—C4—C3123.1 (4)C17—C16—H16118.5
C5—C4—H4118.5C16—C17—C18118.6 (4)
C3—C4—H4118.5C16—C17—H17120.7
C4—C5—C6120.6 (4)C18—C17—H17120.7
C4—C5—H5119.7C17—C18—C19119.4 (4)
C6—C5—H5119.7C17—C18—H18120.3
C11—C6—C5123.4 (4)C19—C18—H18120.3
C11—C6—C7118.2 (4)C20—C19—C18118.4 (5)
C5—C6—C7118.4 (4)C20—C19—H19120.8
C8—C7—C6118.6 (4)C18—C19—H19120.8
C8—C7—C2120.9 (4)N3—C20—C19123.2 (4)
C6—C7—C2120.5 (4)N3—C20—H20118.4
C9—C8—C7121.0 (5)C19—C20—H20118.4
C9—C8—H8119.5
O2—Cu2—N1—C1−10.5 (4)N1—C1—C3—C4174.6 (4)
O3—Cu2—N1—C1173.6 (4)C2—C3—C4—C50.4 (6)
O2—Cu2—N1—N2179.6 (3)C1—C3—C4—C5−177.8 (4)
O3—Cu2—N1—N23.6 (3)C3—C4—C5—C6−0.9 (7)
C1—N1—N2—C12−174.6 (4)C4—C5—C6—C11179.9 (4)
Cu2—N1—N2—C12−3.0 (5)C4—C5—C6—C7−0.1 (6)
C1—N1—N2—Cu1−0.9 (5)C11—C6—C7—C8−0.1 (6)
Cu2—N1—N2—Cu1170.69 (17)C5—C6—C7—C8179.8 (4)
O1—Cu1—N2—C12172.5 (5)C11—C6—C7—C2−178.4 (4)
O1i—Cu1—N2—C12−28.3 (5)C5—C6—C7—C21.6 (6)
N2i—Cu1—N2—C1270.6 (5)O2—C2—C7—C8−1.0 (6)
O1—Cu1—N2—N11.6 (3)C3—C2—C7—C8179.8 (4)
O1i—Cu1—N2—N1160.8 (3)O2—C2—C7—C6177.1 (4)
N2i—Cu1—N2—N1−100.4 (3)C3—C2—C7—C6−2.1 (6)
O2—Cu2—N3—C20−23.5 (4)C6—C7—C8—C9−0.4 (7)
O3—Cu2—N3—C20152.8 (4)C2—C7—C8—C9177.8 (5)
O2—Cu2—N3—C16154.6 (3)C7—C8—C9—C100.7 (8)
O3—Cu2—N3—C16−29.1 (3)C8—C9—C10—C11−0.3 (9)
O1i—Cu1—O1—C1−103.3 (3)C9—C10—C11—C6−0.3 (8)
N2—Cu1—O1—C1−2.0 (3)C5—C6—C11—C10−179.4 (5)
N2i—Cu1—O1—C1158.7 (3)C7—C6—C11—C100.5 (7)
N1—Cu2—O2—C26.4 (3)Cu2—O3—C12—N23.1 (6)
N3—Cu2—O2—C2−169.9 (3)Cu2—O3—C12—C13−178.6 (3)
N1—Cu2—O3—C12−3.6 (3)N1—N2—C12—O3−0.2 (6)
N3—Cu2—O3—C12172.2 (3)Cu1—N2—C12—O3−171.2 (3)
Cu1—O1—C1—N12.2 (5)N1—N2—C12—C13−178.4 (4)
Cu1—O1—C1—C3−179.0 (3)Cu1—N2—C12—C1310.7 (8)
N2—N1—C1—O1−0.8 (6)O3—C12—C13—C15−69.6 (6)
Cu2—N1—C1—O1−170.8 (3)N2—C12—C13—C15108.6 (5)
N2—N1—C1—C3−179.6 (3)O3—C12—C13—C1453.2 (6)
Cu2—N1—C1—C310.4 (6)N2—C12—C13—C14−128.5 (5)
Cu2—O2—C2—C3−3.0 (6)C20—N3—C16—C170.9 (6)
Cu2—O2—C2—C7177.9 (3)Cu2—N3—C16—C17−177.3 (3)
O2—C2—C3—C4−178.1 (4)N3—C16—C17—C18−0.7 (7)
C7—C2—C3—C41.1 (6)C16—C17—C18—C19−0.5 (7)
O2—C2—C3—C10.1 (7)C17—C18—C19—C201.4 (8)
C7—C2—C3—C1179.2 (4)C16—N3—C20—C190.0 (7)
O1—C1—C3—C2177.6 (4)Cu2—N3—C20—C19178.2 (4)
N1—C1—C3—C2−3.6 (6)C18—C19—C20—N3−1.2 (8)
O1—C1—C3—C4−4.3 (6)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1ii0.932.533.362 (4)150

Symmetry codes: (ii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2917).

References

  • Nishio, M. (2004). CrystEngComm, 6, 130–158.
  • Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett.13, 51–55. [PubMed]
  • Pouralimardan, O., Chamayou, A. C., Janiak, C. & Hassan, H. M. (2007). Inorg. Chim. Acta, 360, 1599–1608.
  • Saalfrank, R. W. & Bernt, I. (1998). Curr. Opin. Solid State Mater. Sci.3, 407–413.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography