PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o929–o930.
Published online 2009 March 31. doi:  10.1107/S1600536809011301
PMCID: PMC2968930

N-(2-Furo­yl)-N′-(2-pyrid­yl)thio­urea

Abstract

The title compound, C11H9N3O2S, crystallizes with two independent mol­ecules in the asymmetric unit. The central thio­urea core makes dihedral angles of −3.3 (3) and 0.6 (3)° with the furan carbonyl groups in each mol­ecule, whereas the pyridine ring is inclined by 4.63 (2) and 11.28 (7)°, respectively. The transcis geometry of the thio­urea fragment is stabilized by an intra­molecular N—H(...)N hydrogen bond between the H atom of the cis-thio­amide group and the pyridine N atom. In the crystal structure, inter­molecular bifurcated N—H(...)S and N—H(...)O hydrogen bonds form centrosymmetric tetra­mers extending along the b axis.

Related literature

For general background, see: Aly et al. (2007 [triangle]); Su et al. (2006 [triangle]). For related structures, see: Duque et al. (2008 [triangle]); Corrêa et al. (2008 [triangle]); Theodoro et al. (2008 [triangle]); Valdés-Martínez et al. (2002 [triangle]); Koch (2001 [triangle]); Pérez et al. (2008 [triangle]). For the synthesis, see: Otazo-Sánchez et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o929-scheme1.jpg

Experimental

Crystal data

  • C11H9N3O2S
  • M r = 247.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o929-efi1.jpg
  • a = 6.9510 (1) Å
  • b = 15.7000 (4) Å
  • c = 20.2700 (6) Å
  • β = 90.284 (2)°
  • V = 2212.05 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 150 K
  • 0.12 × 0.08 × 0.06 mm

Data collection

  • Enraf–Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 22281 measured reflections
  • 4337 independent reflections
  • 3574 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.122
  • S = 1.10
  • 4337 reflections
  • 323 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011301/ng2563sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011301/ng2563Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Brazilian agency CNPq. OE-H thanks CONACyT of Mexico for research grant No. 61541.

supplementary crystallographic information

Comment

The importance of aroylthioureas is found largely in heterocyclic syntheses and many of these substrates have interesting biological activities (Aly et al., 2007). Aroylthioureas have also attracted much attention because of their unique properties, such as the strong coordination ability (Su et al., 2006). The title compound (I), Fig. 1, was synthesized from furoyl isothiocyanate and 2-aminopyridine in dry acetone. Studies of a number of substituted thioureas, including N-furoylthioureas, show intramolecular hydrogen bonding between N'H and the furoyl oxygen (Duque et al., 2008; Theodoro et al., 2008; Corrêa et al., 2008). There is also an intermolecular NH hydrogen bond with a sulfur of a neighboring molecule to form a two-dimensional network in these latter thioureas. The molecule structure of the title compound is shown in Figure 1. This thiourea derivative, like other pyridyl thioureas, is found in a conformation resulting from intramolecular hydrogen bonding of N2H(N'H) to the pyridine nitrogen, N3, and cis-cis like N-phenyl- N'-(2-pyridyl)thiourea derivatives (Valdés-Martínez et al., 2002). The title compound crystallizes in the thioamide form with two independent molecules in the asymmetric unit. The main bond lengths are within the ranges obtained for similar compounds (Koch et al., 2001 and Pérez et al. 2008). The C2—S1 and C1—O1 bonds (Table 1) both show the expected double-bond character. The short values of the C2—N1, C2—N2 and C1—N2 bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The C=S distance for compound I (two unique molecules) averages 1.667 (2) Å. The furan carbonyl (O1—C1—C3—O2 and O1a—C1a—C3a—O2a, two unique molecules) groups are inclined at an angle of -3.3 (3) ° and 0.6 (3) ° with respect to the plane formed by the thiourea moiety, whereas the 2-pyridyl (C7—C8—C9—C10—C11 and C7a—C8a—C9a—C10a—C11a, two unique molecules) rings are inclined at an angle of -3.3 (3) ° and 0.6 (3) °, respectively. In addition, the dihedral angles of two independent molecules between the furoyl groups and pyridine ring planes are 85.1 (2)° and 82.96 (8) °, respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N1—H1···N3 intramolecular hydrogen bond. Another weaker bifurcated intramolecular hydrogen interaction between the furan oxygen atom O2 and the N1—H1 hydrogen atom is observed. The crystal structure is very interesting, stabilized by intermolecular bifurcated N—H···S (non bonding distance of 3.353 (2) Å and bond angle of 170 (2)°) and N—H···O (non bonding distance of 2.940 (2) Å and bond angle of 162 (2)°) hydrogen bonds forming centrosymmetric tetramers extending along the b axis.

Experimental

The title compound (I) was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with 2-aminopyridine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 150–151 °C). Elemental analysis (%) for C11H9N3O2S calculated: C 53.44, H 3.64, N 17.00, S 12.96; found: C 53.50, H 3.46, N 16.99, S 12.58.

Refinement

H atoms on the C atoms were positioned geometrically with C—H = 0.93–0.97 Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line.
Fig. 2.
View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C11H9N3O2SF(000) = 1024
Mr = 247.27Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13181 reflections
a = 6.9510 (1) Åθ = 2.9–26.0°
b = 15.7000 (4) ŵ = 0.28 mm1
c = 20.2700 (6) ÅT = 150 K
β = 90.284 (2)°Block, colorless
V = 2212.05 (9) Å30.12 × 0.08 × 0.06 mm
Z = 8

Data collection

Enraf–Nonius KappaCCD diffractometer3574 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Enraf Nonius FR590Rint = 0.060
horizontally mounted graphite crystalθmax = 26.0°, θmin = 2.9°
[var phi] scans and ω scans with κ offsetsh = −8→8
22281 measured reflectionsk = −19→18
4337 independent reflectionsl = −24→24

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042w = 1/[σ2(Fo2) + (0.0699P)2 + 0.3338P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.45 e Å3
4337 reflectionsΔρmin = −0.46 e Å3
323 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1A0.26900 (7)0.58701 (3)−0.01361 (2)0.03185 (16)
S10.86024 (7)0.20621 (3)−0.13099 (2)0.03742 (17)
N1A0.0427 (2)0.55696 (11)0.09207 (8)0.0285 (4)
O1A−0.12681 (18)0.64878 (9)0.02319 (7)0.0327 (3)
O20.7008 (2)−0.07818 (9)0.00044 (7)0.0379 (4)
N30.8621 (2)0.08935 (10)0.07607 (8)0.0313 (4)
N2A0.3235 (2)0.48042 (10)0.08445 (8)0.0292 (4)
N10.7790 (2)0.07419 (10)−0.04921 (9)0.0297 (4)
O2A−0.23343 (19)0.56744 (9)0.18216 (7)0.0370 (3)
N20.8903 (2)0.19839 (11)−0.00248 (8)0.0278 (4)
C30.6597 (3)−0.06607 (12)−0.06512 (10)0.0311 (4)
C2A0.2051 (2)0.53986 (12)0.05684 (9)0.0268 (4)
C10.6980 (3)0.01830 (13)−0.09411 (10)0.0330 (4)
C110.8702 (3)0.06331 (14)0.13915 (10)0.0370 (5)
H110.84520.00630.14830.044*
N3A0.1495 (2)0.44154 (11)0.17897 (8)0.0316 (4)
C1A−0.1108 (3)0.60931 (12)0.07437 (9)0.0277 (4)
C11A0.1415 (3)0.40025 (13)0.23715 (10)0.0358 (5)
H11A0.02870.40350.26150.043*
C7A0.3113 (3)0.43617 (12)0.14412 (10)0.0294 (4)
C70.8961 (2)0.17098 (12)0.06335 (9)0.0270 (4)
O10.6582 (3)0.03377 (10)−0.15091 (8)0.0527 (4)
C80.9405 (3)0.23029 (14)0.11254 (10)0.0340 (4)
H80.96410.28710.10220.041*
C3A−0.2598 (3)0.61301 (12)0.12527 (9)0.0290 (4)
C6A−0.3910 (3)0.58333 (14)0.22036 (11)0.0404 (5)
H6A−0.41160.56040.2620.048*
C10A0.2925 (3)0.35352 (14)0.26215 (11)0.0411 (5)
H10A0.28230.32570.30250.049*
C4A−0.4268 (3)0.65642 (12)0.12727 (10)0.0312 (4)
H4A−0.47670.69210.09480.037*
C60.6596 (3)−0.16117 (14)0.01396 (12)0.0418 (5)
H60.6744−0.18670.05510.05*
C90.9482 (3)0.20191 (14)0.17660 (11)0.0401 (5)
H90.97660.23980.21050.048*
C20.8401 (2)0.15650 (12)−0.05889 (9)0.0275 (4)
C5A−0.5112 (3)0.63660 (14)0.18931 (11)0.0368 (5)
H5A−0.62790.65690.20520.044*
C100.9135 (3)0.11655 (15)0.19077 (10)0.0389 (5)
H100.91950.09630.23380.047*
C9A0.4598 (3)0.34887 (15)0.22583 (11)0.0448 (5)
H9A0.56450.31820.24180.054*
C40.5942 (3)−0.13956 (14)−0.09150 (12)0.0410 (5)
H40.5561−0.1485−0.1350.049*
C8A0.4710 (3)0.38987 (14)0.16572 (10)0.0379 (5)
H8A0.58180.38670.14030.045*
C50.5951 (3)−0.20049 (14)−0.03991 (12)0.0410 (5)
H50.5577−0.2572−0.04310.049*
H2A0.425 (3)0.4683 (14)0.0623 (11)0.037 (6)*
H20.934 (3)0.2477 (17)−0.0082 (12)0.044 (7)*
H1A0.024 (3)0.5257 (16)0.1268 (12)0.043 (6)*
H10.796 (3)0.0567 (15)−0.0081 (12)0.041 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S1A0.0344 (3)0.0315 (3)0.0297 (3)0.00331 (19)0.00427 (19)0.0052 (2)
S10.0482 (3)0.0361 (3)0.0280 (3)−0.0017 (2)0.0017 (2)0.0040 (2)
N1A0.0284 (8)0.0290 (9)0.0281 (9)0.0000 (6)0.0010 (6)0.0050 (7)
O1A0.0311 (7)0.0331 (7)0.0338 (8)−0.0008 (6)−0.0009 (5)0.0078 (6)
O20.0430 (8)0.0330 (8)0.0377 (9)−0.0026 (6)0.0002 (6)0.0033 (6)
N30.0331 (8)0.0301 (9)0.0308 (9)−0.0014 (7)−0.0010 (6)0.0036 (7)
N2A0.0291 (8)0.0297 (9)0.0287 (9)0.0039 (7)0.0026 (6)0.0016 (7)
N10.0338 (9)0.0277 (9)0.0277 (9)0.0000 (6)−0.0026 (7)0.0006 (7)
O2A0.0383 (8)0.0430 (9)0.0298 (8)0.0064 (6)0.0011 (6)0.0052 (6)
N20.0289 (8)0.0251 (9)0.0294 (9)−0.0025 (7)0.0005 (6)0.0012 (7)
C30.0282 (9)0.0312 (10)0.0340 (11)0.0029 (8)−0.0028 (7)−0.0032 (8)
C2A0.0285 (9)0.0236 (10)0.0282 (10)−0.0023 (7)−0.0014 (7)−0.0019 (7)
C10.0354 (10)0.0309 (11)0.0327 (12)0.0022 (8)−0.0039 (8)−0.0034 (8)
C110.0377 (11)0.0383 (12)0.0351 (12)0.0001 (9)−0.0003 (8)0.0087 (9)
N3A0.0361 (9)0.0301 (9)0.0285 (9)−0.0011 (7)0.0021 (6)0.0014 (7)
C1A0.0275 (9)0.0254 (10)0.0302 (11)−0.0045 (7)−0.0026 (7)0.0012 (8)
C11A0.0466 (12)0.0326 (11)0.0283 (11)−0.0042 (9)0.0026 (8)0.0012 (8)
C7A0.0359 (10)0.0242 (9)0.0280 (10)−0.0011 (8)−0.0016 (8)0.0002 (8)
C70.0216 (8)0.0302 (10)0.0293 (10)0.0009 (7)0.0011 (7)0.0023 (8)
O10.0830 (12)0.0382 (9)0.0368 (9)−0.0051 (8)−0.0204 (8)−0.0002 (7)
C80.0349 (10)0.0325 (11)0.0344 (11)−0.0032 (8)−0.0006 (8)−0.0009 (9)
C3A0.0313 (10)0.0280 (10)0.0277 (10)−0.0029 (8)−0.0026 (7)0.0016 (8)
C6A0.0450 (12)0.0450 (13)0.0312 (12)−0.0007 (9)0.0083 (9)−0.0009 (9)
C10A0.0553 (13)0.0387 (12)0.0294 (11)0.0014 (10)−0.0013 (9)0.0083 (9)
C4A0.0301 (10)0.0285 (10)0.0349 (11)−0.0014 (8)−0.0021 (7)0.0028 (8)
C60.0418 (12)0.0326 (12)0.0510 (14)−0.0034 (9)0.0031 (9)0.0079 (10)
C90.0415 (11)0.0460 (13)0.0326 (12)0.0006 (9)−0.0045 (8)−0.0061 (10)
C20.0238 (8)0.0273 (10)0.0314 (11)0.0044 (7)0.0018 (7)−0.0007 (8)
C5A0.0322 (10)0.0382 (12)0.0401 (12)−0.0015 (9)0.0065 (8)−0.0052 (9)
C100.0368 (11)0.0523 (14)0.0276 (11)0.0016 (9)−0.0003 (8)0.0046 (10)
C9A0.0500 (13)0.0462 (13)0.0383 (13)0.0116 (10)−0.0053 (10)0.0099 (10)
C40.0341 (11)0.0399 (12)0.0489 (14)0.0018 (9)−0.0076 (9)−0.0103 (10)
C8A0.0394 (11)0.0395 (12)0.0348 (12)0.0068 (9)0.0004 (8)0.0040 (9)
C50.0323 (11)0.0302 (11)0.0604 (15)−0.0014 (8)−0.0008 (9)0.0028 (10)

Geometric parameters (Å, °)

S1A—C2A1.6705 (19)N3A—C11A1.347 (3)
S1—C21.6633 (19)C1A—C3A1.467 (3)
N1A—C2A1.365 (2)C11A—C10A1.375 (3)
N1A—C1A1.393 (2)C11A—H11A0.93
N1A—H1A0.87 (2)C7A—C8A1.395 (3)
O1A—C1A1.213 (2)C7—C81.398 (3)
O2—C61.362 (3)C8—C91.373 (3)
O2—C31.371 (2)C8—H80.93
N3—C71.329 (2)C3A—C4A1.346 (3)
N3—C111.343 (3)C6A—C5A1.338 (3)
N2A—C2A1.363 (2)C6A—H6A0.93
N2A—C7A1.398 (3)C10A—C9A1.381 (3)
N2A—H2A0.86 (2)C10A—H10A0.93
N1—C21.375 (3)C4A—C5A1.425 (3)
N1—C11.382 (2)C4A—H4A0.93
N1—H10.89 (2)C6—C51.330 (3)
O2A—C6A1.367 (3)C6—H60.93
O2A—C3A1.369 (2)C9—C101.392 (3)
N2—C21.363 (2)C9—H90.93
N2—C71.402 (2)C5A—H5A0.93
N2—H20.84 (3)C10—H100.93
C3—C41.350 (3)C9A—C8A1.381 (3)
C3—C11.474 (3)C9A—H9A0.93
C1—O11.207 (2)C4—C51.417 (3)
C11—C101.371 (3)C4—H40.93
C11—H110.93C8A—H8A0.93
N3A—C7A1.334 (2)C5—H50.93
C2A—N1A—C1A128.01 (17)C9—C8—H8121.1
C2A—N1A—H1A116.0 (15)C7—C8—H8121.1
C1A—N1A—H1A115.3 (15)C4A—C3A—O2A110.57 (17)
C6—O2—C3106.52 (16)C4A—C3A—C1A130.76 (18)
C7—N3—C11118.14 (18)O2A—C3A—C1A118.66 (16)
C2A—N2A—C7A131.03 (17)C5A—C6A—O2A110.37 (19)
C2A—N2A—H2A115.6 (15)C5A—C6A—H6A124.8
C7A—N2A—H2A113.4 (15)O2A—C6A—H6A124.8
C2—N1—C1128.90 (18)C11A—C10A—C9A118.3 (2)
C2—N1—H1112.8 (15)C11A—C10A—H10A120.8
C1—N1—H1118.3 (15)C9A—C10A—H10A120.8
C6A—O2A—C3A106.10 (15)C3A—C4A—C5A105.96 (18)
C2—N2—C7131.01 (17)C3A—C4A—H4A127
C2—N2—H2114.8 (16)C5A—C4A—H4A127
C7—N2—H2114.0 (16)C5—C6—O2110.4 (2)
C4—C3—O2109.50 (18)C5—C6—H6124.8
C4—C3—C1132.2 (2)O2—C6—H6124.8
O2—C3—C1118.28 (17)C8—C9—C10120.1 (2)
N2A—C2A—N1A114.79 (17)C8—C9—H9119.9
N2A—C2A—S1A119.45 (14)C10—C9—H9119.9
N1A—C2A—S1A125.73 (14)N2—C2—N1114.32 (17)
O1—C1—N1126.22 (19)N2—C2—S1119.24 (15)
O1—C1—C3121.33 (18)N1—C2—S1126.44 (15)
N1—C1—C3112.44 (17)C6A—C5A—C4A107.00 (18)
N3—C11—C10123.3 (2)C6A—C5A—H5A126.5
N3—C11—H11118.4C4A—C5A—H5A126.5
C10—C11—H11118.4C11—C10—C9117.83 (19)
C7A—N3A—C11A118.13 (17)C11—C10—H10121.1
O1A—C1A—N1A126.07 (17)C9—C10—H10121.1
O1A—C1A—C3A121.29 (17)C10A—C9A—C8A119.8 (2)
N1A—C1A—C3A112.65 (16)C10A—C9A—H9A120.1
N3A—C11A—C10A123.00 (19)C8A—C9A—H9A120.1
N3A—C11A—H11A118.5C3—C4—C5106.5 (2)
C10A—C11A—H11A118.5C3—C4—H4126.7
N3A—C7A—C8A122.58 (18)C5—C4—H4126.7
N3A—C7A—N2A118.80 (17)C9A—C8A—C7A118.12 (19)
C8A—C7A—N2A118.60 (17)C9A—C8A—H8A120.9
N3—C7—C8122.89 (18)C7A—C8A—H8A120.9
N3—C7—N2118.45 (17)C6—C5—C4107.01 (19)
C8—C7—N2118.65 (17)C6—C5—H5126.5
C9—C8—C7117.75 (19)C4—C5—H5126.5
C6—O2—C3—C40.1 (2)C6A—O2A—C3A—C1A179.28 (17)
C6—O2—C3—C1−177.81 (17)O1A—C1A—C3A—C4A−0.9 (3)
C7A—N2A—C2A—N1A−2.9 (3)N1A—C1A—C3A—C4A179.17 (19)
C7A—N2A—C2A—S1A175.31 (16)O1A—C1A—C3A—O2A−179.68 (17)
C1A—N1A—C2A—N2A−174.81 (17)N1A—C1A—C3A—O2A0.4 (2)
C1A—N1A—C2A—S1A7.1 (3)C3A—O2A—C6A—C5A−0.2 (2)
C2—N1—C1—O1−3.4 (3)N3A—C11A—C10A—C9A0.0 (3)
C2—N1—C1—C3177.41 (17)O2A—C3A—C4A—C5A−0.3 (2)
C4—C3—C1—O15.4 (3)C1A—C3A—C4A—C5A−179.11 (19)
O2—C3—C1—O1−177.24 (19)C3—O2—C6—C5−0.1 (2)
C4—C3—C1—N1−175.4 (2)C7—C8—C9—C100.4 (3)
O2—C3—C1—N12.0 (2)C7—N2—C2—N12.3 (3)
C7—N3—C11—C10−0.6 (3)C7—N2—C2—S1−176.68 (14)
C2A—N1A—C1A—O1A0.7 (3)C1—N1—C2—N2171.78 (17)
C2A—N1A—C1A—C3A−179.38 (17)C1—N1—C2—S1−9.3 (3)
C7A—N3A—C11A—C10A0.4 (3)O2A—C6A—C5A—C4A0.0 (2)
C11A—N3A—C7A—C8A−0.1 (3)C3A—C4A—C5A—C6A0.1 (2)
C11A—N3A—C7A—N2A−178.41 (17)N3—C11—C10—C90.8 (3)
C2A—N2A—C7A—N3A9.8 (3)C8—C9—C10—C11−0.7 (3)
C2A—N2A—C7A—C8A−168.59 (19)C11A—C10A—C9A—C8A−0.7 (4)
C11—N3—C7—C80.3 (3)O2—C3—C4—C5−0.2 (2)
C11—N3—C7—N2179.18 (16)C1—C3—C4—C5177.4 (2)
C2—N2—C7—N35.8 (3)C10A—C9A—C8A—C7A0.9 (3)
C2—N2—C7—C8−175.35 (17)N3A—C7A—C8A—C9A−0.5 (3)
N3—C7—C8—C9−0.2 (3)N2A—C7A—C8A—C9A177.75 (19)
N2—C7—C8—C9−179.06 (16)O2—C6—C5—C40.0 (2)
C6A—O2A—C3A—C4A0.3 (2)C3—C4—C5—C60.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.89 (2)2.23 (2)2.653 (2)109.3 (18)
N1—H1···N30.89 (2)1.84 (2)2.612 (2)145 (2)
N1A—H1A···O2A0.87 (2)2.22 (2)2.661 (2)111.6 (18)
N1A—H1A···N3A0.87 (2)1.90 (2)2.632 (2)141 (2)
N2—H2···O1Ai0.84 (3)2.13 (2)2.940 (2)162 (2)
N2A—H2A···S1Ai0.86 (2)2.51 (2)3.3530 (15)170 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2563).

References

  • Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem.28, 73–93.
  • Corrêa, R. S., Estévez-Hernández, O., Ellena, J. & Duque, J. (2008). Acta Cryst. E64, o1414. [PMC free article] [PubMed]
  • Duque, J., Estévez-Hernández, O., Mascarenhas, Y., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1457. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Koch, K. R. (2001). Coord. Chem. Rev.216217, 473–488.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamarro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o513. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, B. Q., Liu, G. L. & Sheng, L. (2006). Phosphorus Sulfur Silicon Relat. Elem.181, 745–750.
  • Theodoro, J. E., Mascarenhas, Y., Ellena, J., Estévez-Hernández, O. & Duque, J. (2008). Acta Cryst. E64, o1193. [PMC free article] [PubMed]
  • Valdés-Martínez, J., Hernández-Ortega, S., Espinosa-Pérez, G., Presto, C., Haslow, K. D., Ackerman, L. J., Szczepura, L. F., Goldberg, K. I., Kaminsky, W. & West, D. X. (2002). J. Mol. Struct.608, 77–87.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography