PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o667.
Published online 2009 March 6. doi:  10.1107/S1600536809007181
PMCID: PMC2968929

2-Bromo-4-chloro-6-[(E)-(2-chloro­phen­yl)imino­meth­yl]phenol

Abstract

The title compound, C13H8BrCl2NO, was obtained by reaction of 3-bromo-5-chloro­salicylaldehyde and 2-chloro­benzenamine in methanol. The mol­ecule displays an E configuration with respect to the imine C=N double bond. The dihedral angle between the two benzene rings is 4.57 (11)°. The mol­ecular conformation is stabilized by an intra­molecular O—H(...)N hydrogen bond. In the crystal structure, mol­ecules are linked by inter­molecular C—H(...)O hydrogen-bonding inter­actions into zigzag chains running parallel to the b axis. Inter­molecular Br(...)Cl [3.5289 (11) Å] and Cl(...)Cl [3.5042 (12) Å] inter­actions are present.

Related literature

For the biological activities of Schiff base complexes, see: Cukurovali et al. (2002 [triangle]); Tarafder et al. (2002 [triangle]); Ali et al. (2002 [triangle]). For halogen–halogen inter­actions, see: Saruma et al. (1986 [triangle]); Moorthy et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o667-scheme1.jpg

Experimental

Crystal data

  • C13H8BrCl2NO
  • M r = 345.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o667-efi1.jpg
  • a = 8.4299 (10) Å
  • b = 14.0115 (16) Å
  • c = 11.4194 (14) Å
  • β = 104.5120 (10)°
  • V = 1305.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.54 mm−1
  • T = 298 K
  • 0.45 × 0.38 × 0.36 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.230, T max = 0.279
  • 6450 measured reflections
  • 2295 independent reflections
  • 1726 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.077
  • S = 1.03
  • 2295 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007181/rz2298sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007181/rz2298Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author gratefully acknowledge financial support for research project No. 08JZ09 from the Phytochemistry Key Laboratory of Shaanxi Province.

supplementary crystallographic information

Comment

Schiff base complexes are of great interests for inorganic and bioinorganic chemistry. To the best of our knowledge, in the past two decades Schiff base ligands have demonstrated significant biological activities and new examples have been tested for their antitumor, antimicrobial and antiviral activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

The molecular structure and crystal packing of the title compound are illustrated in Fig. 1 and 2, respectively. The C1═N1 bond distance (1.279 (4) Å) is shorter than expected. The molecule is not strictly planar, the maximum deviations from the planarity are 0.199 (5) and 0.162 (5) for atoms Cl1 and Cl2. The dihedral angle formed by the benzene rings is 4.57 (11)°. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1). In the crystal packing, the molecules are linked via intermolecular C—H···O hydrogen bonds into zig-zag chains running parallel to the b axis. In addition, intermolecular Br···Cl and Cl···Cl interactions are observed (Fig. 2) falling in the typical range of halogen-halogen interactions (Saruma & Desiraju, 1986, Moorthy et al., 2002): Br1···Cl1i = 3.5289 (11) Å; Cl1···Cl2ii = 3.5042 (12) Å; symmetry codes: (i) x, 3/2-y, -1/2+z; (ii) 1+x, y, 1+z.

Experimental

3-Bromo-5-chlorosalicylaldehyde(0.1 mmol, 23.6 mg) and 2-chlorobenzenamine (0.1 mmol, 12.8 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 1 h and then filtered. After allowing the filtrate to stand in air for 7 d, yellow block-shaped crystals of the title compound were formed by slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 52%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, O—H = 0.82 Å and Uiso(H) = = 1.2 Ueq(C, O).

Figures

Fig. 1.
The structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii. The dashed line represents a hydrogen bond.
Fig. 2.
The crystal packing of the title compound viewed along the a axis. Halogen-halogen interactions are shown as dashed lines.

Crystal data

C13H8BrCl2NOF(000) = 680
Mr = 345.01Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2353 reflections
a = 8.4299 (10) Åθ = 2.4–25.2°
b = 14.0115 (16) ŵ = 3.54 mm1
c = 11.4194 (14) ÅT = 298 K
β = 104.512 (1)°Block, yellow
V = 1305.8 (3) Å30.45 × 0.38 × 0.36 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer2295 independent reflections
Radiation source: fine-focus sealed tube1726 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Siemens, 1996)h = −10→9
Tmin = 0.230, Tmax = 0.279k = −14→16
6450 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077w = 1/[σ2(Fo2) + (0.0256P)2 + 0.9771P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2295 reflectionsΔρmax = 0.39 e Å3
164 parametersΔρmin = −0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0127 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.54350 (5)0.75675 (2)0.54203 (4)0.06096 (18)
Cl10.70198 (11)0.53128 (7)0.95100 (8)0.0596 (3)
Cl2−0.01427 (12)0.49417 (8)0.22925 (8)0.0767 (3)
N10.1581 (3)0.43674 (18)0.4723 (2)0.0434 (7)
O10.3040 (3)0.59685 (15)0.45663 (19)0.0500 (6)
H10.23860.55320.43440.075*
C10.2481 (4)0.4266 (2)0.5798 (3)0.0436 (8)
H1A0.23590.37250.62380.052*
C20.3687 (4)0.4978 (2)0.6346 (3)0.0381 (7)
C30.3916 (4)0.5800 (2)0.5697 (3)0.0387 (7)
C40.5108 (4)0.6456 (2)0.6259 (3)0.0420 (8)
C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)
H50.68600.67440.77770.055*
C60.5809 (4)0.5499 (2)0.8042 (3)0.0453 (8)
C70.4644 (4)0.4838 (2)0.7520 (3)0.0436 (8)
H70.44920.42960.79500.052*
C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)
C9−0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)
C10−0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)
H10−0.21220.33620.15240.089*
C11−0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)
H11−0.25500.19310.24030.098*
C12−0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)
H12−0.11450.15890.43490.090*
C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)
H130.07110.26770.54400.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0721 (3)0.0385 (2)0.0755 (3)−0.00233 (18)0.0246 (2)0.00929 (18)
Cl10.0696 (6)0.0611 (6)0.0377 (5)0.0104 (5)−0.0059 (4)−0.0064 (4)
Cl20.0649 (6)0.1111 (9)0.0489 (6)−0.0086 (6)0.0043 (5)0.0204 (6)
N10.0443 (15)0.0433 (15)0.0400 (16)−0.0012 (12)0.0058 (13)−0.0021 (13)
O10.0568 (14)0.0463 (13)0.0419 (14)−0.0019 (11)0.0033 (11)0.0102 (11)
C10.053 (2)0.0336 (17)0.045 (2)0.0022 (15)0.0139 (17)0.0005 (15)
C20.0456 (18)0.0347 (16)0.0339 (16)0.0025 (14)0.0100 (14)−0.0008 (14)
C30.0413 (18)0.0372 (17)0.0376 (18)0.0075 (14)0.0100 (15)0.0012 (14)
C40.0472 (19)0.0302 (16)0.051 (2)0.0046 (14)0.0159 (16)0.0037 (14)
C50.0457 (19)0.0396 (18)0.051 (2)0.0001 (15)0.0078 (17)−0.0093 (16)
C60.052 (2)0.0444 (19)0.0365 (18)0.0114 (16)0.0050 (15)−0.0022 (15)
C70.056 (2)0.0365 (17)0.0375 (18)0.0046 (16)0.0096 (16)0.0017 (15)
C80.0420 (18)0.048 (2)0.047 (2)0.0008 (15)0.0108 (16)−0.0116 (16)
C90.042 (2)0.073 (2)0.043 (2)0.0002 (18)0.0108 (16)−0.0120 (18)
C100.057 (2)0.111 (4)0.052 (2)−0.013 (2)0.011 (2)−0.029 (3)
C110.066 (3)0.088 (3)0.091 (4)−0.021 (2)0.020 (3)−0.052 (3)
C120.073 (3)0.055 (2)0.099 (4)−0.018 (2)0.023 (3)−0.022 (3)
C130.065 (2)0.051 (2)0.065 (3)−0.0089 (19)0.006 (2)−0.0048 (19)

Geometric parameters (Å, °)

Br1—C41.885 (3)C5—H50.9300
Cl1—C61.750 (3)C6—C71.373 (5)
Cl2—C91.736 (4)C7—H70.9300
N1—C11.279 (4)C8—C131.381 (5)
N1—C81.409 (4)C8—C91.390 (5)
O1—C31.338 (3)C9—C101.377 (5)
O1—H10.8200C10—C111.379 (6)
C1—C21.449 (4)C10—H100.9300
C1—H1A0.9300C11—C121.364 (7)
C2—C71.394 (4)C11—H110.9300
C2—C31.409 (4)C12—C131.388 (5)
C3—C41.394 (4)C12—H120.9300
C4—C51.381 (4)C13—H130.9300
C5—C61.378 (4)
C1—N1—C8123.1 (3)C6—C7—H7120.0
C3—O1—H1109.5C2—C7—H7120.0
N1—C1—C2121.4 (3)C13—C8—C9117.8 (3)
N1—C1—H1A119.3C13—C8—N1125.0 (3)
C2—C1—H1A119.3C9—C8—N1117.2 (3)
C7—C2—C3119.9 (3)C10—C9—C8121.4 (4)
C7—C2—C1119.5 (3)C10—C9—Cl2118.9 (3)
C3—C2—C1120.6 (3)C8—C9—Cl2119.7 (3)
O1—C3—C4119.2 (3)C9—C10—C11119.5 (4)
O1—C3—C2122.4 (3)C9—C10—H10120.3
C4—C3—C2118.3 (3)C11—C10—H10120.3
C5—C4—C3121.2 (3)C12—C11—C10120.3 (4)
C5—C4—Br1119.4 (2)C12—C11—H11119.8
C3—C4—Br1119.4 (2)C10—C11—H11119.8
C6—C5—C4119.6 (3)C11—C12—C13119.9 (4)
C6—C5—H5120.2C11—C12—H12120.1
C4—C5—H5120.2C13—C12—H12120.1
C7—C6—C5120.9 (3)C8—C13—C12121.1 (4)
C7—C6—Cl1119.8 (3)C8—C13—H13119.5
C5—C6—Cl1119.3 (3)C12—C13—H13119.5
C6—C7—C2120.1 (3)
C8—N1—C1—C2177.5 (3)Cl1—C6—C7—C2−179.4 (2)
N1—C1—C2—C7−179.9 (3)C3—C2—C7—C6−0.2 (5)
N1—C1—C2—C3−0.8 (5)C1—C2—C7—C6178.9 (3)
C7—C2—C3—O1179.6 (3)C1—N1—C8—C130.1 (5)
C1—C2—C3—O10.6 (4)C1—N1—C8—C9−178.6 (3)
C7—C2—C3—C40.0 (4)C13—C8—C9—C10−0.4 (5)
C1—C2—C3—C4−179.1 (3)N1—C8—C9—C10178.4 (3)
O1—C3—C4—C5−179.1 (3)C13—C8—C9—Cl2178.9 (3)
C2—C3—C4—C50.6 (4)N1—C8—C9—Cl2−2.3 (4)
O1—C3—C4—Br10.8 (4)C8—C9—C10—C110.0 (6)
C2—C3—C4—Br1−179.6 (2)Cl2—C9—C10—C11−179.3 (3)
C3—C4—C5—C6−1.0 (5)C9—C10—C11—C120.3 (6)
Br1—C4—C5—C6179.2 (2)C10—C11—C12—C13−0.1 (7)
C4—C5—C6—C70.8 (5)C9—C8—C13—C120.6 (6)
C4—C5—C6—Cl1180.0 (2)N1—C8—C13—C12−178.1 (3)
C5—C6—C7—C2−0.2 (5)C11—C12—C13—C8−0.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.586 (3)147
C11—H11···O1i0.932.563.324 (5)139

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2298).

References

  • Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem.92, 141–148. [PubMed]
  • Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem.27, 171–176.
  • Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc.124, 6530–6531. [PubMed]
  • Saruma, J. A. R. & Desiraju, G. R. (1986). Acc. Chem. Res.19, 222–228.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547–2554.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography