PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o811.
Published online 2009 March 19. doi:  10.1107/S1600536809009684
PMCID: PMC2968928

(E)-2-[(2,4-Dichloro­phen­yl)imino­methyl]-6-methyl­phenol

Abstract

The title compound, C14H11Cl2NO, is a Schiff base which adopts the phenol–imine tautomeric form in the solid state. There are two mol­ecules in the asymmetric unit. Head-to-tail π–π inter­actions [centroid-to-centroid distances of 3.682 (2), 3.708 (2), 3.904 (2) and 3.910 (2) Å] between adjacent mol­ecules produce two symmetry-independent infinite chains running along the b axis.

Related literature

For the biological properties of Schiff bases, see: Lozier et al. (1975 [triangle]). For Schiff base tautomerism, see: Şahin et al. (2005 [triangle]); Hadjoudis et al. (1987 [triangle]). For the structure of a similar compound, see: Karataş et al. (2005 [triangle]). For the classification of hydrogen-bonding patterns, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o811-scheme1.jpg

Experimental

Crystal data

  • C14H11Cl2NO
  • M r = 280.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o811-efi1.jpg
  • a = 19.981 (2) Å
  • b = 7.1473 (6) Å
  • c = 20.057 (4) Å
  • β = 114.913 (11)°
  • V = 2597.8 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.48 mm−1
  • T = 296 K
  • 0.45 × 0.21 × 0.11 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.903, T max = 0.953
  • 30840 measured reflections
  • 5370 independent reflections
  • 3188 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.106
  • S = 0.88
  • 5370 reflections
  • 334 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009684/ya2087sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009684/ya2087Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for providing access to the Stoe IPDSII diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties.(Lozier et al., 1975). There are two types of intramolecular hydrogen bonds in Schiff bases, which may be stabilized either in keto-amine (N–H···O hydrogen bond)(Şahin et al., 2005) or phenol-imine (N···H–O hydrogen bond) tautomeric forms (Hadjoudis et al., 1987). The present X-ray investigation shows that the title compound exists in the phenol-imine form.

There are two symmetry independent molecules in the crystal of the the title cmpound (Fig. 1). The N1A—C7A and N1B—C7B bond lengths are consistent with the double-bond character of these bonds (Table 1). The title compound is similar to that reported by Karataş et al., 2005. However, while the molecule of the latter compound is almost planar, the title compound, which has a Me substituent, significantly deviates from planarity with the dihedral angles of 30.40 (5)° and 27.84 (5)° for the Cg1 / Cg2, and Cg3 / Cg4 plane pairs respectively. The C4A—N1A—C7A—C8A and C4B—N1B—C7B—C8B torsion angles are 178.4 (2)° and 177.5 (2)°; the intramolecular O–H···N hydrogen bonds produce S(6) rings within each of the two molecules (Bernstein et al.,1995).

The crystal packing of the title compound features four symmetry independent π-π interactions (Fig. 2). The perpendicular distances from Cg1 to Cg2i [symmetry code: (i) = 3/2 - x, -1/2 + y, 1/2 - z] and from Cg1 to Cg2ii[symmetry code: (ii) = 3/2 - x, 1/2 + y, 1/2 - z] are 3.449 (2) Å and 3.537 (2) Å respectively (see PLATON description for exact definition of the parameters; Spek, 2009). The centroid-to-centroid distances are 3.682 (2) Å (Cg1 to Cg2i) and 3.910 (2) Å (Cg1 to Cg2ii). Similarly, ring Cg4 is oriented in such a way that the perpendicular distances for Cg4—Cg3iii and Cg4—Cg3iv are 3.500 (2) Å and 3.492 (2) Å [symmetry codes: (iii) = 1/2 - x, -1/2 + y, 1/2 - z; (iv) = 1/2 - x, 1/2 + y, 1/2 - z], and the distances between the ring centroids are 3.904 (2) Å (Cg4 to Cg3iii) and 3.708 (2) Å (Cg4 to Cg3iv).

Experimental

The solution of 3-methylsalicyladehyde (0.1 g, 0.82 mmol) in 20 ml e thanol was mixed with the 20 ml of the ethanol solution of 2,4-dichloroaniline (0.13 g 0.82 mmol). The reaction mixture was then refluxed for 2 hrs under stirring. The single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from ethanol (yield, %: 62; m.p. 370–372 K).

Refinement

The H1A and H1B atoms were located in a difference map and subsequently refined subject to a DFIX (SHELXL97; Sheldrick, 2008) restraint of O—H=0.82 (2) Å. All other H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H=0.93–0.96 Å and Uiso(H)=1.2Ueq(C) [1.5Ueq(C) for the methyl H atoms].

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability.
Fig. 2.
Infinite chains formed due to the π-π interactions in the crystal packing of the title compound; the packing is viewed down the c axis.

Crystal data

C14H11Cl2NOF(000) = 1152
Mr = 280.14Dx = 1.433 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 24378 reflections
a = 19.981 (2) Åθ = 1.9–27.8°
b = 7.1473 (6) ŵ = 0.48 mm1
c = 20.057 (4) ÅT = 296 K
β = 114.913 (11)°Prism, yellow
V = 2597.8 (7) Å30.45 × 0.21 × 0.11 mm
Z = 8

Data collection

Stoe IPDSII diffractometer5370 independent reflections
Radiation source: fine-focus sealed tube3188 reflections with I > 2σ(I)
graphiteRint = 0.056
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω scansh = −25→25
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −8→8
Tmin = 0.903, Tmax = 0.953l = −25→25
30840 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106w = 1/[σ2(Fo2) + (0.0615P)2] where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.002
5370 reflectionsΔρmax = 0.40 e Å3
334 parametersΔρmin = −0.40 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0055 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1A0.03154 (13)0.4396 (4)0.67838 (15)0.0634 (6)
C1B0.81914 (17)0.2780 (3)0.96769 (12)0.0640 (7)
C2A0.05942 (13)0.3951 (4)0.62832 (13)0.0621 (6)
H2A0.02790.36520.58010.075*
C2B0.74914 (17)0.2265 (4)0.92203 (13)0.0683 (7)
H2B0.71630.18960.94130.082*
C3A0.13455 (12)0.3954 (3)0.65054 (11)0.0527 (5)
C3B0.72734 (15)0.2291 (3)0.84732 (12)0.0620 (6)
H3B0.67950.19370.81630.074*
C4A0.18332 (11)0.4388 (3)0.72239 (11)0.0475 (5)
C4B0.77533 (13)0.2836 (3)0.81725 (11)0.0508 (5)
C5A0.15257 (13)0.4858 (3)0.77090 (12)0.0573 (6)
H5A0.18360.51820.81900.069*
C5B0.84670 (13)0.3341 (3)0.86513 (11)0.0537 (6)
C6A0.07801 (14)0.4855 (4)0.74967 (14)0.0651 (7)
H6A0.05880.51620.78320.078*
C6B0.86936 (15)0.3331 (4)0.94063 (11)0.0620 (6)
H6B0.91700.36840.97230.074*
C7A0.30675 (12)0.4072 (3)0.80567 (11)0.0482 (5)
H7A0.29030.37370.84110.058*
C7B0.69131 (13)0.3133 (3)0.69404 (11)0.0518 (5)
H7B0.65590.34580.71070.062*
C8A0.38465 (11)0.4160 (3)0.82605 (10)0.0463 (5)
C8B0.67009 (12)0.3030 (3)0.61578 (11)0.0487 (5)
C9A0.41332 (12)0.4551 (3)0.77458 (10)0.0471 (5)
C9B0.72176 (12)0.2636 (3)0.58774 (10)0.0482 (5)
C10A0.48888 (12)0.4609 (3)0.79476 (12)0.0562 (6)
C10B0.70102 (14)0.2580 (3)0.51193 (12)0.0579 (6)
C11A0.53546 (13)0.4309 (4)0.86787 (14)0.0659 (7)
H11A0.58620.43690.88260.079*
C11B0.62790 (16)0.2882 (4)0.46609 (12)0.0696 (7)
H11B0.61310.28340.41550.084*
C12A0.50878 (14)0.3922 (4)0.91977 (13)0.0710 (7)
H12A0.54140.37230.96860.085*
C12B0.57587 (15)0.3253 (4)0.49248 (13)0.0733 (7)
H12B0.52680.34450.46000.088*
C13A0.43479 (13)0.3833 (4)0.89929 (11)0.0607 (6)
H13A0.41710.35520.93420.073*
C13B0.59656 (13)0.3339 (4)0.56658 (13)0.0629 (6)
H13B0.56160.36050.58450.076*
C14A0.51781 (15)0.4976 (5)0.73832 (16)0.0848 (9)
H10A0.54840.60730.75180.127*
H10B0.47720.51670.69130.127*
H10C0.54640.39230.73570.127*
C14B0.75762 (17)0.2210 (4)0.48301 (14)0.0827 (9)
H10D0.73470.22580.43030.124*
H10E0.77880.09940.49870.124*
H10F0.79570.31410.50150.124*
N1A0.25916 (9)0.4438 (2)0.74044 (9)0.0467 (4)
N1B0.75702 (11)0.2794 (3)0.74117 (9)0.0504 (4)
O1A0.36837 (9)0.4854 (3)0.70326 (8)0.0620 (5)
H1A0.3248 (10)0.476 (4)0.6980 (15)0.083 (9)*
O1B0.79332 (9)0.2323 (3)0.63215 (9)0.0611 (4)
H1B0.7955 (17)0.240 (4)0.6727 (11)0.093 (10)*
Cl1A−0.06295 (4)0.43590 (12)0.65100 (5)0.0885 (3)
Cl1B0.84855 (5)0.26781 (11)1.06241 (3)0.0916 (3)
Cl2A0.17044 (4)0.33856 (12)0.58800 (3)0.0787 (2)
Cl2B0.90870 (3)0.40133 (11)0.82999 (3)0.0724 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C1A0.0444 (13)0.0550 (16)0.0929 (18)0.0012 (12)0.0309 (13)0.0058 (13)
C1B0.102 (2)0.0526 (15)0.0446 (11)0.0191 (15)0.0379 (14)0.0065 (11)
C2A0.0472 (13)0.0630 (17)0.0672 (14)−0.0081 (12)0.0154 (11)0.0032 (12)
C2B0.098 (2)0.0608 (17)0.0586 (13)0.0009 (15)0.0457 (15)0.0054 (12)
C3A0.0484 (13)0.0558 (14)0.0540 (12)−0.0056 (11)0.0217 (10)0.0024 (10)
C3B0.0789 (17)0.0586 (15)0.0553 (12)0.0000 (13)0.0350 (13)0.0058 (11)
C4A0.0431 (11)0.0440 (13)0.0557 (12)0.0006 (10)0.0210 (10)0.0038 (10)
C4B0.0681 (15)0.0443 (13)0.0428 (10)0.0102 (11)0.0259 (11)0.0030 (9)
C5A0.0538 (14)0.0601 (15)0.0620 (13)0.0029 (12)0.0284 (11)−0.0021 (11)
C5B0.0669 (15)0.0527 (14)0.0456 (11)0.0156 (12)0.0279 (11)0.0027 (10)
C6A0.0586 (15)0.0636 (17)0.0840 (17)0.0035 (13)0.0407 (14)−0.0023 (13)
C6B0.0773 (17)0.0599 (15)0.0432 (11)0.0171 (14)0.0199 (11)−0.0011 (10)
C7A0.0519 (13)0.0489 (14)0.0484 (11)−0.0002 (11)0.0258 (10)−0.0014 (9)
C7B0.0592 (14)0.0500 (14)0.0518 (12)0.0047 (11)0.0289 (11)0.0034 (10)
C8A0.0452 (12)0.0481 (13)0.0428 (10)0.0003 (10)0.0158 (9)−0.0047 (9)
C8B0.0510 (13)0.0481 (13)0.0454 (10)−0.0025 (11)0.0188 (10)0.0024 (9)
C9A0.0450 (12)0.0519 (14)0.0423 (10)−0.0005 (10)0.0165 (9)−0.0078 (9)
C9B0.0488 (12)0.0496 (13)0.0435 (10)−0.0090 (11)0.0166 (10)−0.0012 (9)
C10A0.0468 (13)0.0602 (16)0.0618 (13)−0.0023 (12)0.0230 (11)−0.0112 (11)
C10B0.0729 (16)0.0553 (15)0.0465 (11)−0.0142 (13)0.0262 (11)−0.0025 (10)
C11A0.0419 (13)0.0701 (18)0.0743 (16)0.0005 (12)0.0134 (12)−0.0159 (13)
C11B0.0843 (19)0.0688 (18)0.0425 (11)−0.0127 (15)0.0139 (13)0.0004 (11)
C12A0.0587 (16)0.083 (2)0.0504 (13)0.0082 (15)0.0027 (12)−0.0024 (12)
C12B0.0631 (16)0.0766 (19)0.0566 (14)0.0003 (15)0.0020 (13)0.0070 (13)
C13A0.0575 (15)0.0734 (17)0.0441 (11)0.0071 (13)0.0145 (11)0.0024 (11)
C13B0.0550 (15)0.0663 (17)0.0640 (14)0.0043 (13)0.0217 (12)0.0043 (12)
C14A0.0615 (17)0.115 (3)0.0924 (19)−0.0119 (17)0.0470 (15)−0.0137 (18)
C14B0.098 (2)0.103 (2)0.0605 (14)−0.0235 (19)0.0466 (15)−0.0126 (15)
N1A0.0412 (9)0.0507 (11)0.0474 (9)−0.0005 (9)0.0179 (8)−0.0015 (8)
N1B0.0604 (12)0.0514 (11)0.0403 (8)0.0030 (10)0.0220 (9)0.0018 (8)
O1A0.0509 (10)0.0930 (13)0.0418 (8)−0.0039 (9)0.0190 (7)0.0000 (8)
O1B0.0493 (9)0.0849 (13)0.0507 (9)−0.0049 (9)0.0226 (8)−0.0047 (8)
Cl1A0.0454 (3)0.0874 (6)0.1318 (6)−0.0008 (4)0.0364 (4)0.0067 (5)
Cl1B0.1469 (7)0.0863 (5)0.0449 (3)0.0213 (5)0.0437 (4)0.0063 (3)
Cl2A0.0639 (4)0.1209 (6)0.0530 (3)−0.0176 (4)0.0263 (3)−0.0127 (3)
Cl2B0.0588 (4)0.1028 (6)0.0590 (3)0.0109 (4)0.0281 (3)0.0000 (3)

Geometric parameters (Å, °)

C1A—C2A1.375 (3)C8A—C9A1.404 (3)
C1A—C6A1.377 (4)C8A—C13A1.406 (3)
C1A—Cl1A1.730 (2)C8B—C9B1.397 (3)
C1B—C2B1.361 (4)C8B—C13B1.400 (3)
C1B—C6B1.384 (4)C9A—O1A1.348 (2)
C1B—Cl1B1.738 (2)C9A—C10A1.389 (3)
C2A—C3A1.374 (3)C9B—O1B1.347 (3)
C2A—H2A0.9300C9B—C10B1.398 (3)
C2B—C3B1.373 (3)C10A—C11A1.383 (3)
C2B—H2B0.9300C10A—C14A1.495 (3)
C3A—C4A1.393 (3)C10B—C11B1.377 (4)
C3A—Cl2A1.735 (2)C10B—C14B1.496 (4)
C3B—C4B1.387 (3)C11A—C12A1.383 (4)
C3B—H3B0.9300C11A—H11A0.9300
C4A—C5A1.393 (3)C11B—C12B1.377 (4)
C4A—N1A1.402 (3)C11B—H11B0.9300
C4B—C5B1.390 (3)C12A—C13A1.359 (3)
C4B—N1B1.412 (2)C12A—H12A0.9300
C5A—C6A1.366 (3)C12B—C13B1.366 (3)
C5A—H5A0.9300C12B—H12B0.9300
C5B—C6B1.386 (3)C13A—H13A0.9300
C5B—Cl2B1.731 (2)C13B—H13B0.9300
C6A—H6A0.9300C14A—H10A0.9600
C6B—H6B0.9300C14A—H10B0.9600
C7A—N1A1.279 (3)C14A—H10C0.9600
C7A—C8A1.435 (3)C14B—H10D0.9600
C7A—H7A0.9300C14B—H10E0.9600
C7B—N1B1.277 (3)C14B—H10F0.9600
C7B—C8B1.445 (3)O1A—H1A0.834 (17)
C7B—H7B0.9300O1B—H1B0.798 (17)
C2A—C1A—C6A120.7 (2)C13B—C8B—C7B119.9 (2)
C2A—C1A—Cl1A119.2 (2)O1A—C9A—C10A117.44 (18)
C6A—C1A—Cl1A120.1 (2)O1A—C9A—C8A121.10 (19)
C2B—C1B—C6B121.5 (2)C10A—C9A—C8A121.45 (19)
C2B—C1B—Cl1B120.2 (2)O1B—C9B—C8B121.73 (18)
C6B—C1B—Cl1B118.3 (2)O1B—C9B—C10B117.4 (2)
C3A—C2A—C1A119.1 (2)C8B—C9B—C10B120.9 (2)
C3A—C2A—H2A120.5C11A—C10A—C9A117.9 (2)
C1A—C2A—H2A120.5C11A—C10A—C14A121.9 (2)
C1B—C2B—C3B119.6 (2)C9A—C10A—C14A120.3 (2)
C1B—C2B—H2B120.2C11B—C10B—C9B117.8 (2)
C3B—C2B—H2B120.2C11B—C10B—C14B122.1 (2)
C2A—C3A—C4A121.9 (2)C9B—C10B—C14B120.0 (2)
C2A—C3A—Cl2A119.54 (18)C12A—C11A—C10A121.9 (2)
C4A—C3A—Cl2A118.56 (17)C12A—C11A—H11A119.0
C2B—C3B—C4B121.3 (3)C10A—C11A—H11A119.0
C2B—C3B—H3B119.4C10B—C11B—C12B122.3 (2)
C4B—C3B—H3B119.4C10B—C11B—H11B118.9
C3A—C4A—C5A117.0 (2)C12B—C11B—H11B118.9
C3A—C4A—N1A118.80 (18)C13A—C12A—C11A119.8 (2)
C5A—C4A—N1A124.06 (19)C13A—C12A—H12A120.1
C3B—C4B—C5B117.95 (19)C11A—C12A—H12A120.1
C3B—C4B—N1B123.5 (2)C13B—C12B—C11B119.7 (2)
C5B—C4B—N1B118.40 (19)C13B—C12B—H12B120.1
C6A—C5A—C4A121.7 (2)C11B—C12B—H12B120.1
C6A—C5A—H5A119.1C12A—C13A—C8A120.9 (2)
C4A—C5A—H5A119.1C12A—C13A—H13A119.5
C6B—C5B—C4B121.4 (2)C8A—C13A—H13A119.5
C6B—C5B—Cl2B119.1 (2)C12B—C13B—C8B120.4 (2)
C4B—C5B—Cl2B119.51 (15)C12B—C13B—H13B119.8
C5A—C6A—C1A119.6 (2)C8B—C13B—H13B119.8
C5A—C6A—H6A120.2C10A—C14A—H10A109.5
C1A—C6A—H6A120.2C10A—C14A—H10B109.5
C1B—C6B—C5B118.2 (2)H10A—C14A—H10B109.5
C1B—C6B—H6B120.9C10A—C14A—H10C109.5
C5B—C6B—H6B120.9H10A—C14A—H10C109.5
N1A—C7A—C8A122.16 (18)H10B—C14A—H10C109.5
N1A—C7A—H7A118.9C10B—C14B—H10D109.5
C8A—C7A—H7A118.9C10B—C14B—H10E109.5
N1B—C7B—C8B122.3 (2)H10D—C14B—H10E109.5
N1B—C7B—H7B118.9C10B—C14B—H10F109.5
C8B—C7B—H7B118.9H10D—C14B—H10F109.5
C9A—C8A—C13A118.0 (2)H10E—C14B—H10F109.5
C9A—C8A—C7A121.95 (18)C7A—N1A—C4A121.04 (17)
C13A—C8A—C7A120.03 (19)C7B—N1B—C4B120.91 (19)
C9B—C8B—C13B118.83 (19)C9A—O1A—H1A108.4 (19)
C9B—C8B—C7B121.29 (19)C9B—O1B—H1B104 (2)
C6A—C1A—C2A—C3A0.6 (4)C13A—C8A—C9A—C10A0.2 (3)
Cl1A—C1A—C2A—C3A−179.00 (19)C7A—C8A—C9A—C10A−179.2 (2)
C6B—C1B—C2B—C3B−0.1 (4)C13B—C8B—C9B—O1B−179.9 (2)
Cl1B—C1B—C2B—C3B−177.81 (19)C7B—C8B—C9B—O1B0.5 (3)
C1A—C2A—C3A—C4A0.2 (4)C13B—C8B—C9B—C10B1.1 (3)
C1A—C2A—C3A—Cl2A179.75 (19)C7B—C8B—C9B—C10B−178.5 (2)
C1B—C2B—C3B—C4B−0.1 (4)O1A—C9A—C10A—C11A179.7 (2)
C2A—C3A—C4A—C5A−1.2 (3)C8A—C9A—C10A—C11A−1.4 (3)
Cl2A—C3A—C4A—C5A179.29 (18)O1A—C9A—C10A—C14A−0.7 (3)
C2A—C3A—C4A—N1A−177.4 (2)C8A—C9A—C10A—C14A178.3 (2)
Cl2A—C3A—C4A—N1A3.1 (3)O1B—C9B—C10B—C11B179.5 (2)
C2B—C3B—C4B—C5B0.6 (3)C8B—C9B—C10B—C11B−1.5 (3)
C2B—C3B—C4B—N1B176.5 (2)O1B—C9B—C10B—C14B−0.8 (3)
C3A—C4A—C5A—C6A1.4 (4)C8B—C9B—C10B—C14B178.2 (2)
N1A—C4A—C5A—C6A177.4 (2)C9A—C10A—C11A—C12A1.3 (4)
C3B—C4B—C5B—C6B−0.9 (3)C14A—C10A—C11A—C12A−178.3 (3)
N1B—C4B—C5B—C6B−177.1 (2)C9B—C10B—C11B—C12B0.8 (4)
C3B—C4B—C5B—Cl2B179.49 (18)C14B—C10B—C11B—C12B−178.9 (3)
N1B—C4B—C5B—Cl2B3.3 (3)C10A—C11A—C12A—C13A−0.1 (4)
C4A—C5A—C6A—C1A−0.7 (4)C10B—C11B—C12B—C13B0.3 (4)
C2A—C1A—C6A—C5A−0.4 (4)C11A—C12A—C13A—C8A−1.1 (4)
Cl1A—C1A—C6A—C5A179.2 (2)C9A—C8A—C13A—C12A1.0 (4)
C2B—C1B—C6B—C5B−0.2 (4)C7A—C8A—C13A—C12A−179.6 (2)
Cl1B—C1B—C6B—C5B177.52 (18)C11B—C12B—C13B—C8B−0.8 (4)
C4B—C5B—C6B—C1B0.7 (3)C9B—C8B—C13B—C12B0.1 (4)
Cl2B—C5B—C6B—C1B−179.66 (18)C7B—C8B—C13B—C12B179.7 (2)
N1A—C7A—C8A—C9A−3.7 (3)C8A—C7A—N1A—C4A−178.4 (2)
N1A—C7A—C8A—C13A176.9 (2)C3A—C4A—N1A—C7A−151.4 (2)
N1B—C7B—C8B—C9B−3.1 (4)C5A—C4A—N1A—C7A32.7 (3)
N1B—C7B—C8B—C13B177.3 (2)C8B—C7B—N1B—C4B−177.5 (2)
C13A—C8A—C9A—O1A179.1 (2)C3B—C4B—N1B—C7B34.1 (3)
C7A—C8A—C9A—O1A−0.3 (3)C5B—C4B—N1B—C7B−150.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.83 (2)1.86 (2)2.603 (2)149 (3)
O1B—H1B···N1B0.80 (2)1.86 (2)2.599 (2)155 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2087).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.
  • Karataş, A., Ünver, H., Elmali, A. & Svoboda, I. (2005). Z. Naturforsch. Teil A, 60, 376–382.
  • Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J.15, 955–962. [PubMed]
  • Şahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859–o2861.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2002). X-RED and X-AREA Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography