PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o721.
Published online 2009 March 11. doi:  10.1107/S1600536809007788
PMCID: PMC2968927

(E)-N′-(5-Chloro-2-hydroxy­benzyl­idene)-3,5-dihydroxy­benzohydrazide mono­hydrate

Abstract

In the title compound, C14H11ClN2O4·H2O, the dihedral angle between the two benzene rings is 8.5 (2)° and an intra­molecular O—H(...)N hydrogen bond is observed in the Schiff base mol­ecule. In the crystal structure, the water mol­ecule accepts an N—H(...)O hydrogen bond and makes O—H(...)O hydrogen bonds to two further Schiff base mol­ecules. Further inter­molecular O—H(...)O hydrogen bonds lead to the formation of layers parallel to the bc plane.

Related literature

For background to the synthesis of Schiff base compounds, see: Herrick et al. (2008 [triangle]); Suresh et al. (2007 [triangle]). For the biological activity of Schiff base compounds, see: Bhandari et al. (2008 [triangle]); Sinha et al. (2008 [triangle]). For a related structure, see: Jiang et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o721-scheme1.jpg

Experimental

Crystal data

  • C14H11ClN2O4·H2O
  • M r = 324.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o721-efi1.jpg
  • a = 14.106 (3) Å
  • b = 8.0090 (16) Å
  • c = 13.127 (3) Å
  • β = 108.26 (3)°
  • V = 1408.3 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.943, T max = 0.948
  • 6975 measured reflections
  • 2496 independent reflections
  • 1437 reflections with I > 2σ(I)
  • R int = 0.084

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.142
  • S = 1.04
  • 2496 reflections
  • 202 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007788/hb2921sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007788/hb2921Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Project of the Dalian Science and Technology Bureau (grant No. 2008E11SF168).

supplementary crystallographic information

Comment

Schiff base compounds can be easily synthesized from the reaction of aldehydes with primary amines (Herrick et al., 2008; Suresh et al., 2007). These compounds show interesting biological activities, especially antimicrobial activities (Bhandari et al., 2008; Sinha et al., 2008). In this paper, the crystal structure of the title compound, (I), containing a new Schiff base compound derived from the condensation reaction of 5-chlorosalicylaldehyde with 3,5-dihydroxybenzoic acid hydrazide is reported.

The Schiff base molecule of (I) displays a trans configuration with respect to the C=N and C—N bonds (Fig. 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable to those in the related compound 3,5-dihydroxy-N'-(2-hydroxybenzylidene) benzohydrazide monohydrate (Jiang et al., 2008). The Schiff base molecule is nearly planar, the dihedral angle between the two benzene rings is 8.5 (2)°. An intramolecular O—H···N hydrogen bond is observed. In the crystal structure the water molecule links three symmetry related molecules through O—H···O and O—H···N hydrogen bonds (Table 1). Together with two further intermolecular O—H···O hydrogen bonds, layers parallel to the bc plane are formed (Fig. 2).

Experimental

5-Chlorosalicylaldehyde (0.1 mmol, 15.6 mg) and 3,5-dihydroxybenzoic acid hydrazide (0.1 mmol, 16.8 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear solution. Light yellow blocks of (I) were formed by gradual evaporation of the solvent over a period of nine days at room temperature.

Refinement

All H atoms were placed in geometrically idealized positions (C—H = 0.93 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
Fig. 2.
The molecular packing of (I). The donor···acceptor contacts for the intermolecular hydrogen bonds are shown as dashed lines. H atoms are omitted for clarity.

Crystal data

C14H11ClN2O4·H2OF(000) = 672
Mr = 324.71Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 575 reflections
a = 14.106 (3) Åθ = 3.1–20.4°
b = 8.0090 (16) ŵ = 0.30 mm1
c = 13.127 (3) ÅT = 298 K
β = 108.26 (3)°Block, light yellow
V = 1408.3 (6) Å30.20 × 0.20 × 0.18 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer2496 independent reflections
Radiation source: fine-focus sealed tube1437 reflections with I > 2σ(I)
graphiteRint = 0.084
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Siemens, 1996)h = −16→13
Tmin = 0.943, Tmax = 0.948k = −9→7
6975 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0453P)2 + 1.0153P] where P = (Fo2 + 2Fc2)/3
2496 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.45135 (9)1.22680 (17)0.91318 (10)0.0558 (4)
N10.8522 (2)0.8948 (4)0.8966 (3)0.0295 (8)
N20.9299 (2)0.8091 (4)0.9689 (2)0.0291 (8)
H20.92460.77581.02910.035*
O10.7409 (2)1.0093 (4)0.7040 (2)0.0439 (8)
H10.78530.95230.74420.066*
O21.02312 (19)0.8242 (4)0.8572 (2)0.0380 (8)
O31.3085 (2)0.4281 (4)1.0233 (2)0.0491 (9)
H31.29830.44560.95920.074*
O41.1915 (2)0.5757 (4)1.3090 (2)0.0400 (8)
H41.14810.63081.32290.060*
O50.8783 (2)0.7575 (4)0.6646 (2)0.0434 (8)
H5A0.91960.77610.72630.065*
H5B0.84350.67650.67500.065*
C10.6935 (3)1.0274 (5)0.8653 (3)0.0274 (9)
C20.6769 (3)1.0606 (5)0.7568 (3)0.0309 (10)
C30.5923 (3)1.1451 (6)0.6983 (3)0.0426 (12)
H3A0.58191.16660.62600.051*
C40.5231 (3)1.1979 (6)0.7450 (4)0.0437 (12)
H4A0.46621.25500.70500.052*
C50.5392 (3)1.1652 (6)0.8520 (3)0.0364 (11)
C60.6229 (3)1.0829 (5)0.9126 (3)0.0354 (11)
H60.63301.06380.98510.042*
C70.7800 (3)0.9389 (5)0.9314 (3)0.0298 (10)
H70.78380.91271.00160.036*
C81.0139 (3)0.7786 (5)0.9438 (3)0.0254 (9)
C91.0938 (3)0.6850 (5)1.0242 (3)0.0252 (9)
C101.1629 (3)0.6018 (5)0.9869 (3)0.0291 (10)
H101.15740.60650.91450.035*
C111.2398 (3)0.5122 (5)1.0569 (3)0.0304 (10)
C121.2492 (3)0.5052 (5)1.1645 (3)0.0334 (10)
H121.30110.44551.21170.040*
C131.1801 (3)0.5882 (5)1.2015 (3)0.0285 (10)
C141.1025 (3)0.6788 (5)1.1327 (3)0.0297 (10)
H141.05700.73451.15870.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0391 (7)0.0748 (10)0.0587 (8)0.0186 (7)0.0226 (6)−0.0009 (7)
N10.0256 (18)0.032 (2)0.0297 (19)0.0018 (16)0.0075 (15)0.0043 (16)
N20.0262 (18)0.039 (2)0.0238 (17)0.0072 (16)0.0095 (15)0.0089 (16)
O10.0415 (18)0.061 (2)0.0333 (17)0.0121 (17)0.0175 (15)0.0069 (16)
O20.0337 (17)0.057 (2)0.0252 (15)0.0057 (15)0.0122 (13)0.0097 (15)
O30.0467 (19)0.069 (2)0.0379 (18)0.0283 (18)0.0223 (16)0.0028 (17)
O40.0422 (19)0.053 (2)0.0282 (16)0.0143 (16)0.0160 (14)0.0059 (14)
O50.0438 (18)0.058 (2)0.0298 (16)−0.0058 (17)0.0131 (14)−0.0021 (15)
C10.022 (2)0.031 (3)0.026 (2)0.0015 (19)0.0036 (17)0.0020 (19)
C20.029 (2)0.037 (3)0.029 (2)0.000 (2)0.0129 (19)0.000 (2)
C30.041 (3)0.057 (3)0.027 (2)0.010 (2)0.006 (2)0.009 (2)
C40.034 (3)0.050 (3)0.042 (3)0.012 (2)0.004 (2)0.009 (2)
C50.026 (2)0.044 (3)0.041 (3)0.008 (2)0.014 (2)−0.002 (2)
C60.035 (2)0.043 (3)0.031 (2)0.000 (2)0.015 (2)−0.001 (2)
C70.028 (2)0.036 (3)0.028 (2)−0.003 (2)0.0116 (18)0.0002 (19)
C80.025 (2)0.028 (2)0.025 (2)−0.0002 (19)0.0087 (17)0.0024 (18)
C90.024 (2)0.029 (2)0.025 (2)−0.0001 (18)0.0104 (17)−0.0021 (18)
C100.031 (2)0.034 (3)0.025 (2)0.002 (2)0.0119 (18)−0.0024 (19)
C110.029 (2)0.035 (3)0.028 (2)0.005 (2)0.0111 (19)−0.002 (2)
C120.032 (2)0.039 (3)0.029 (2)0.008 (2)0.0097 (19)0.003 (2)
C130.028 (2)0.032 (3)0.026 (2)−0.001 (2)0.0088 (18)0.0033 (19)
C140.027 (2)0.037 (3)0.028 (2)0.003 (2)0.0145 (19)−0.001 (2)

Geometric parameters (Å, °)

Cl1—C51.746 (4)C3—C41.372 (6)
N1—C71.290 (4)C3—H3A0.9300
N1—N21.386 (4)C4—C51.376 (6)
N2—C81.348 (4)C4—H4A0.9300
N2—H20.8600C5—C61.368 (6)
O1—C21.364 (4)C6—H60.9300
O1—H10.8200C7—H70.9300
O2—C81.238 (4)C8—C91.484 (5)
O3—C111.362 (4)C9—C101.391 (5)
O3—H30.8200C9—C141.392 (5)
O4—C131.373 (4)C10—C111.382 (5)
O4—H40.8200C10—H100.9300
O5—H5A0.8500C11—C121.378 (5)
O5—H5B0.8500C12—C131.387 (5)
C1—C21.395 (5)C12—H120.9300
C1—C61.401 (5)C13—C141.386 (5)
C1—C71.442 (5)C14—H140.9300
C2—C31.377 (6)
C7—N1—N2115.8 (3)C1—C6—H6120.0
C8—N2—N1119.3 (3)N1—C7—C1122.3 (4)
C8—N2—H2120.4N1—C7—H7118.8
N1—N2—H2120.4C1—C7—H7118.8
C2—O1—H1109.5O2—C8—N2121.6 (3)
C11—O3—H3109.5O2—C8—C9121.8 (3)
C13—O4—H4109.5N2—C8—C9116.6 (3)
H5A—O5—H5B103.8C10—C9—C14119.7 (4)
C2—C1—C6118.5 (4)C10—C9—C8116.8 (3)
C2—C1—C7123.3 (4)C14—C9—C8123.4 (3)
C6—C1—C7118.3 (4)C11—C10—C9120.4 (4)
O1—C2—C3117.5 (4)C11—C10—H10119.8
O1—C2—C1122.4 (4)C9—C10—H10119.8
C3—C2—C1120.1 (4)O3—C11—C12117.6 (4)
C4—C3—C2121.1 (4)O3—C11—C10122.1 (3)
C4—C3—H3A119.5C12—C11—C10120.3 (4)
C2—C3—H3A119.5C11—C12—C13119.2 (4)
C3—C4—C5119.0 (4)C11—C12—H12120.4
C3—C4—H4A120.5C13—C12—H12120.4
C5—C4—H4A120.5O4—C13—C14121.5 (3)
C6—C5—C4121.4 (4)O4—C13—C12117.2 (4)
C6—C5—Cl1118.5 (3)C14—C13—C12121.4 (4)
C4—C5—Cl1120.1 (3)C13—C14—C9119.0 (4)
C5—C6—C1119.9 (4)C13—C14—H14120.5
C5—C6—H6120.0C9—C14—H14120.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.982.685 (4)144
O1—H1···O50.822.472.952 (4)119
O3—H3···O1i0.822.102.916 (4)173
O4—H4···O2ii0.821.992.762 (4)158
N2—H2···O5ii0.862.092.931 (4)164
O5—H5A···O20.851.912.760 (4)174
O5—H5B···O4iii0.852.112.902 (4)156

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x, −y+3/2, z+1/2; (iii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2921).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem.16, 1822–1831. [PubMed]
  • Herrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem.693, 619–624.
  • Jiang, Q.-H., Xu, Y.-H., Jian, L.-Y. & Zhao, L.-M. (2008). Acta Cryst. E64, o338. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem.43, 160–165. [PubMed]
  • Suresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett.36, 1332–1333.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography