PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m358.
Published online 2009 March 6. doi:  10.1107/S1600536809007028
PMCID: PMC2968920

Diaqua­dibromidobis[3-dimethyl­amino-1-(4-pyridyl-κN)prop-2-en-1-one]cadmium(II)

Abstract

In the title compound, [CdBr2(C10H12N2O)2(H2O)2], the CdII ion is located on an inversion center and is six-coordinated by two N atoms [Cd—N = 2.377 (3) Å] from two different 3-dimethyl­amino-1-(4-pyrid­yl)prop-2-en-1-one ligands, two O atoms [Cd—O = 2.355 (2) Å] from two coordinated water mol­ecules and two bromide anions [Cd—Br = 2.6855 (5) Å]. Inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Related literature

For general backgroud, see: Bi et al. (2008 [triangle]); Dong et al. (2008 [triangle]). For related structures, see: Hu et al. (2003 [triangle]); Ito et al. (1984 [triangle]). For details of the synthesis, see Sun et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m358-scheme1.jpg

Experimental

Crystal data

  • [CdBr2(C10H12N2O)2(H2O)2]
  • M r = 660.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m358-efi1.jpg
  • a = 21.362 (3) Å
  • b = 8.4360 (9) Å
  • c = 14.6371 (16) Å
  • β = 114.456 (3)°
  • V = 2401.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.27 mm−1
  • T = 273 K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.407, T max = 0.424
  • 6227 measured reflections
  • 2356 independent reflections
  • 2085 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.090
  • S = 1.02
  • 2356 reflections
  • 144 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.93 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007028/cv2525sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007028/cv2525Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anhui Provincial Natural Science Research Project (KJ2009B240Z) and the National Natural Science Foundation of China (No.20871039) for financial support.

supplementary crystallographic information

Comment

In recent years, researchers showed considerable interest in the physical and chemical properties of mono- and polynuclear complexes of transition metals having the d10 electronic configuration (Bi et al., 2008; Dong et al., 2008). Ligands with pyridyl group have been used to generate various metal-organic architectures with cadmium salts (Hu et al., 2003; Ito et al., 1984). Here we report a new monomeric cadmium(II) complex, viz. the title compound, [Cd(C10H12N2O)2Br2(H2O)2].

The asymmetric unit of the title compound contains a half of centrosymmetric molecule, and the CdII ion lies on an inversion center. Each CdII ion exhibits an octahedral environment with two nitrogen atoms from the pyridyl groups of two ligands, two oxygen atoms from two coordinated water molecules, and two bromine anions (Fig. 1). Intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to bc plane.

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. Ligand was prepared by similar procedure reported in the literature (Sun et al., 2008). For the synthesis of title compoud, a solution of ligand (0.1 mmol), CdBr2 (0.1 mmol) in 30 ml me thanol was refluxed for 2 h, and then cooled to room temperature and filtered. Single crystals suitable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air. Anal. Calcd. for C20H28CdN4O4Br2: C, 36.36; H, 4.27; N, 8.48. Found: C, 36.38; H, 4.38; N, 8.32. Main FT—IR (KBr, cm-1): 3078(w), 1627(s), 1603(m), 1558(w),1498(s), 1437(m), 1384(m), 1329(w),1233(m),781(w).

Refinement

All hydrogen atoms were geometrically positioned (C—H 0.93–0.97 Å, O–H 0.85 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry code: (A) 1 - x,1 - y,1 - z].

Crystal data

[CdBr2(C10H12N2O)2(H2O)2]F(000) = 1304
Mr = 660.68Dx = 1.828 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3328 reflections
a = 21.362 (3) Åθ = 2.6–27.8°
b = 8.4360 (9) ŵ = 4.27 mm1
c = 14.6371 (16) ÅT = 273 K
β = 114.456 (3)°Block, colourless
V = 2401.1 (5) Å30.2 × 0.2 × 0.2 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2356 independent reflections
Radiation source: fine-focus sealed tube2085 reflections with I > 2σ(I)
graphiteRint = 0.073
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −26→25
Tmin = 0.407, Tmax = 0.424k = −8→10
6227 measured reflectionsl = −18→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0479P)2] where P = (Fo2 + 2Fc2)/3
2356 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −0.93 e Å3

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.50000.50000.50000.02740 (13)
Br10.626658 (19)0.61470 (5)0.54529 (3)0.04254 (15)
C10.44435 (18)0.8564 (4)0.4098 (2)0.0332 (8)
H10.45610.87600.47750.040*
C20.43309 (18)0.6830 (4)0.2848 (2)0.0350 (8)
H20.43680.58070.26390.042*
C30.42099 (19)0.9802 (4)0.3443 (2)0.0317 (8)
H30.41711.08100.36730.038*
C40.40298 (16)0.9534 (4)0.2423 (2)0.0270 (7)
C50.40919 (18)0.7997 (4)0.2139 (2)0.0341 (8)
H50.39710.77580.14670.041*
C60.33391 (18)1.0483 (5)0.0698 (2)0.0337 (8)
H60.31490.94720.05580.040*
C70.38011 (16)1.0865 (4)0.1687 (2)0.0276 (7)
C80.2340 (2)0.9862 (5)−0.1300 (3)0.0524 (11)
H8A0.26460.9016−0.12810.079*
H8B0.19900.9969−0.19700.079*
H8C0.21310.9631−0.08480.079*
C90.2647 (2)1.2464 (5)−0.1787 (3)0.0423 (9)
H9A0.28561.3452−0.14920.063*
H9B0.21671.2629−0.21960.063*
H9C0.28661.2058−0.21950.063*
C100.31637 (17)1.1583 (4)−0.0065 (2)0.0299 (7)
H100.33711.25750.00930.036*
N10.45139 (14)0.7084 (3)0.38242 (19)0.0311 (6)
N20.27261 (15)1.1335 (4)−0.1000 (2)0.0338 (7)
O10.40227 (12)1.2232 (3)0.19871 (16)0.0343 (5)
O20.50607 (12)0.3380 (3)0.37287 (16)0.0368 (6)
H2A0.46610.33440.32530.044*
H2B0.53230.38850.35250.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0341 (2)0.0237 (2)0.02374 (19)0.00164 (13)0.01137 (15)0.00238 (13)
Br10.0377 (2)0.0426 (3)0.0455 (2)−0.00547 (16)0.01541 (19)0.00457 (17)
C10.043 (2)0.031 (2)0.0228 (15)−0.0064 (15)0.0108 (14)0.0005 (14)
C20.043 (2)0.0280 (19)0.0297 (16)0.0049 (15)0.0112 (15)0.0012 (15)
C30.043 (2)0.0242 (19)0.0264 (16)−0.0044 (14)0.0129 (15)−0.0006 (13)
C40.0252 (17)0.0282 (17)0.0270 (15)−0.0016 (13)0.0102 (13)0.0032 (14)
C50.042 (2)0.036 (2)0.0241 (15)0.0019 (15)0.0131 (15)−0.0017 (15)
C60.037 (2)0.0299 (19)0.0284 (16)−0.0003 (15)0.0076 (15)0.0022 (15)
C70.0299 (18)0.029 (2)0.0260 (16)0.0017 (14)0.0132 (14)0.0028 (14)
C80.058 (3)0.049 (3)0.037 (2)−0.0098 (19)0.006 (2)−0.0102 (18)
C90.044 (2)0.051 (2)0.0299 (17)0.0098 (18)0.0135 (16)0.0129 (17)
C100.0322 (18)0.0291 (18)0.0275 (15)0.0002 (14)0.0115 (14)−0.0019 (14)
N10.0342 (16)0.0294 (17)0.0295 (14)−0.0007 (12)0.0129 (12)0.0049 (12)
N20.0338 (16)0.0398 (18)0.0251 (13)0.0008 (12)0.0094 (12)0.0021 (13)
O10.0407 (14)0.0288 (14)0.0293 (11)−0.0061 (10)0.0105 (11)0.0017 (10)
O20.0361 (13)0.0434 (15)0.0304 (12)−0.0041 (11)0.0132 (10)−0.0094 (11)

Geometric parameters (Å, °)

Cd1—O2i2.355 (2)C6—C101.379 (5)
Cd1—O22.355 (2)C6—C71.411 (4)
Cd1—N1i2.377 (3)C6—H60.9300
Cd1—N12.377 (3)C7—O11.255 (4)
Cd1—Br1i2.6855 (5)C8—N21.455 (5)
Cd1—Br12.6855 (5)C8—H8A0.9600
C1—N11.339 (4)C8—H8B0.9600
C1—C31.365 (5)C8—H8C0.9600
C1—H10.9300C9—N21.449 (4)
C2—N11.333 (4)C9—H9A0.9600
C2—C51.366 (5)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C3—C41.398 (4)C10—N21.316 (4)
C3—H30.9300C10—H100.9300
C4—C51.385 (5)O2—H2A0.8500
C4—C71.491 (4)O2—H2B0.8501
C5—H50.9300
O2i—Cd1—O2180.0C10—C6—C7121.2 (3)
O2i—Cd1—N1i90.43 (9)C10—C6—H6119.4
O2—Cd1—N1i89.57 (9)C7—C6—H6119.4
O2i—Cd1—N189.57 (9)O1—C7—C6124.8 (3)
O2—Cd1—N190.43 (9)O1—C7—C4118.4 (3)
N1i—Cd1—N1180.00 (11)C6—C7—C4116.8 (3)
O2i—Cd1—Br1i91.41 (6)N2—C8—H8A109.5
O2—Cd1—Br1i88.59 (6)N2—C8—H8B109.5
N1i—Cd1—Br1i90.33 (7)H8A—C8—H8B109.5
N1—Cd1—Br1i89.67 (7)N2—C8—H8C109.5
O2i—Cd1—Br188.59 (6)H8A—C8—H8C109.5
O2—Cd1—Br191.41 (6)H8B—C8—H8C109.5
N1i—Cd1—Br189.67 (7)N2—C9—H9A109.5
N1—Cd1—Br190.33 (7)N2—C9—H9B109.5
Br1i—Cd1—Br1180.000 (15)H9A—C9—H9B109.5
N1—C1—C3123.8 (3)N2—C9—H9C109.5
N1—C1—H1118.1H9A—C9—H9C109.5
C3—C1—H1118.1H9B—C9—H9C109.5
N1—C2—C5123.3 (3)N2—C10—C6125.0 (3)
N1—C2—H2118.3N2—C10—H10117.5
C5—C2—H2118.3C6—C10—H10117.5
C1—C3—C4119.1 (3)C2—N1—C1116.8 (3)
C1—C3—H3120.5C2—N1—Cd1120.2 (2)
C4—C3—H3120.5C1—N1—Cd1122.8 (2)
C5—C4—C3117.0 (3)C10—N2—C9121.4 (3)
C5—C4—C7122.1 (3)C10—N2—C8121.3 (3)
C3—C4—C7120.9 (3)C9—N2—C8117.2 (3)
C2—C5—C4119.9 (3)Cd1—O2—H2A107.7
C2—C5—H5120.0Cd1—O2—H2B104.3
C4—C5—H5120.0H2A—O2—H2B108.3

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O1ii0.852.022.770 (3)147
O2—H2B···O1iii0.852.312.751 (4)113

Symmetry codes: (ii) x, y−1, z; (iii) −x+1, y−1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2525).

References

  • Bi, J. H., Kong, L. T., Huang, Z. X. & Liu, J. H. (2008). Inorg. Chem.47, 4564–4569. [PubMed]
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008). Inorg. Chem.47, 2913–2915. [PubMed]
  • Hu, C. H., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519–529.
  • Ito, M., Shibata, T. & Saito, Y. (1984). Acta Cryst. C40, 2041–2043.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Y.-Y., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, o901. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography