PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o856.
Published online 2009 March 25. doi:  10.1107/S1600536809010010
PMCID: PMC2968915

1-Formyl-r-2,c-6-bis­(4-methoxy­phen­yl)-c-3,t-3-dimethyl­piperidin-4-one

Abstract

In the title compound, C22H25NO4, the piperidine ring adopts a distorted boat conformation. The two benzene rings are approximately perpendicular to each other, making a dihedral angle of 86.2 (8)°. The crystal packing is stabilized by C—H(...)O and C—H(...)π inter­actions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o856-scheme1.jpg

Experimental

Crystal data

  • C22H25NO4
  • M r = 367.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o856-efi1.jpg
  • a = 11.7274 (3) Å
  • b = 18.8556 (4) Å
  • c = 9.7178 (3) Å
  • β = 113.507 (1)°
  • V = 1970.54 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.979, T max = 0.983
  • 26804 measured reflections
  • 6250 independent reflections
  • 4080 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.142
  • S = 1.03
  • 6250 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010010/bt2903sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010010/bt2903Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TK thanks Dr Babu Varghese, SAIF, IIT–Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Piperidine, a basic component of the piper alkaloid piper nigrum is a monocyclic cyclohexane with a hetero atom affixed in the first position. The skeletal ring of piperidine is contained in the molecules of many synthetic and natural medicaments. A significant industrial application of piperidine is for the production of dipiperidinyl dithiuram tetrasulfide, which can be used as a rubber vulcanization accelerator.

The piperidine ring adopts distorted boat conformation with puckering parameters (Cremer & Pople, 1975) q2 = 0.630 (1) Å, q3 =0.070 (1)Å and [var phi]2= 87.2 (1)° and the asymmetry parameters ΔC2(N1) and ΔC2(C4) = 14.78 (12)Å (Nardelli, 1983). The angles between the best plane of the piperidine ring (N1,C3,C4,C6) and the phenyl rings (C8—C13 and C16—C21) are 84.17 (7)° and 80.70 (7)°, respectively. The two phenyl rings are approximately perpendicular to each other as can be seen from the dihedral angle of 86.23 (8)°. The methyl substituents C14 and C15 are oriented equatorially [N1—C2—C3—C14 =] -178.88 (11)° and axially [N1—C2—C3—C15 =] -59.52 (13) ° with respect to the piperidine ring. The sum of the bond angles around N1 atom (359.3°) indicates sp2 hybridization.

The packing of the molecules is controlled by C—H···O types of intermolecular interactions. The symmetry related molecules form a dimer with the graph-set motif of R22(16) (Bernstein et al., 1995) through hydrogen bonds. Further a C—H··· π interaction also leads to the formation of a dimer [C10—H10 = 0.9301 Å, H10···Cg(1) =2.9035 Å, C10···Cg(1) = 3.6627 (17) Å and C10—H10···Cg(1) = 139.71°, where Cg(1) is the centroid of the ring (C16—C21) at (1 - x,-y,2 - z)] .

Experimental

The ice-cold solution of acetic-formic anhydride was prepared from acetic anhydride (10 ml) and 85% formic acid (5 ml) and was added slowly to a cold solution of r-2, c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidine-4-one (1.69 g) in benzene (30 ml). The reaction mixture was stirred at room temperature for 5 hrs. The organic layer was separated, dried over anhydrous Na2SO4 and concentrated. The resulting mass was purified by crystallization from benzene-petroleum ether (333–353 K) in the ratio 1:1.

Refinement

H atoms were positioned geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H, 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
ORTEP plot of the molecule showing that the thermal ellipsoids are drawn at 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
The molecular packing of the compound viewed down the b axis is shown. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C22H25NO4F(000) = 784
Mr = 367.43Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6250 reflections
a = 11.7274 (3) Åθ = 2.2–31.0°
b = 18.8556 (4) ŵ = 0.09 mm1
c = 9.7178 (3) ÅT = 293 K
β = 113.507 (1)°Block, colourless
V = 1970.54 (9) Å30.25 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer6250 independent reflections
Radiation source: fine-focus sealed tube4080 reflections with I > 2σ(I)
graphiteRint = 0.031
ω and [var phi] scansθmax = 31.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −16→16
Tmin = 0.979, Tmax = 0.983k = −27→26
26804 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0615P)2 + 0.3342P] where P = (Fo2 + 2Fc2)/3
6250 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.17408 (11)0.62041 (6)0.40308 (14)0.0338 (3)
H20.11200.65380.40870.041*
C30.10682 (11)0.57637 (7)0.25999 (14)0.0381 (3)
C40.19953 (12)0.53109 (7)0.22723 (13)0.0363 (3)
C50.33023 (12)0.55897 (7)0.27795 (15)0.0366 (3)
H5A0.36230.54590.20360.044*
H5B0.38120.53530.37090.044*
C60.34585 (11)0.63892 (6)0.30324 (13)0.0323 (2)
H60.31380.66210.20480.039*
C70.28230 (12)0.73249 (7)0.42790 (15)0.0398 (3)
H70.34000.75990.40810.048*
C80.22360 (11)0.58092 (7)0.55153 (14)0.0352 (3)
C90.26574 (13)0.51168 (7)0.57097 (15)0.0429 (3)
H90.26380.48630.48800.052*
C100.31075 (14)0.47894 (8)0.70986 (16)0.0446 (3)
H100.33960.43250.71960.054*
C110.31275 (14)0.51526 (8)0.83330 (15)0.0446 (3)
C120.26964 (16)0.58424 (8)0.81650 (17)0.0530 (4)
H120.27000.60920.89930.064*
C130.22628 (14)0.61613 (8)0.67819 (16)0.0462 (3)
H130.19790.66270.66900.055*
C140.00369 (14)0.53174 (9)0.2744 (2)0.0553 (4)
H14A−0.05320.56210.29530.083*
H14B0.03930.49830.35480.083*
H14C−0.04000.50670.18220.083*
C150.04780 (14)0.62642 (8)0.12465 (17)0.0513 (4)
H15A−0.01230.65630.14010.077*
H15B0.00760.59890.03510.077*
H15C0.11140.65530.11430.077*
C160.48138 (11)0.65875 (6)0.38343 (14)0.0332 (3)
C170.55115 (11)0.63584 (7)0.52784 (14)0.0368 (3)
H170.51340.60820.57700.044*
C180.67579 (12)0.65292 (7)0.60132 (16)0.0418 (3)
H180.72120.63660.69820.050*
C190.73163 (13)0.69426 (8)0.52933 (19)0.0511 (4)
C200.66322 (15)0.71813 (10)0.3859 (2)0.0623 (5)
H200.70080.74640.33750.075*
C210.53942 (14)0.70045 (8)0.31376 (17)0.0488 (4)
H210.49430.71680.21680.059*
C220.3775 (2)0.41457 (10)0.9928 (2)0.0736 (5)
H22A0.40420.40231.09690.110*
H22B0.44160.40270.95900.110*
H22C0.30320.38870.93490.110*
C230.92890 (16)0.68961 (11)0.7357 (3)0.0787 (6)
H23A1.01170.70790.76510.118*
H23B0.93110.63870.73500.118*
H23C0.89510.70530.80560.118*
N10.27207 (9)0.66443 (5)0.38626 (11)0.0321 (2)
O10.17227 (10)0.47451 (5)0.16419 (12)0.0515 (3)
O20.22263 (10)0.76191 (5)0.48956 (13)0.0524 (3)
O30.35310 (13)0.48797 (6)0.97457 (12)0.0646 (3)
O40.85343 (11)0.71456 (8)0.59033 (17)0.0816 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0292 (5)0.0337 (6)0.0364 (6)−0.0019 (5)0.0109 (5)−0.0052 (5)
C30.0320 (6)0.0379 (6)0.0374 (7)−0.0076 (5)0.0065 (5)−0.0049 (5)
C40.0435 (7)0.0340 (6)0.0260 (6)−0.0071 (5)0.0080 (5)−0.0030 (5)
C50.0382 (6)0.0353 (6)0.0354 (6)−0.0023 (5)0.0137 (5)−0.0077 (5)
C60.0317 (6)0.0327 (6)0.0288 (6)−0.0019 (5)0.0081 (5)−0.0006 (4)
C70.0364 (6)0.0301 (6)0.0448 (7)−0.0007 (5)0.0076 (6)−0.0040 (5)
C80.0340 (6)0.0369 (6)0.0361 (6)−0.0041 (5)0.0155 (5)−0.0055 (5)
C90.0548 (8)0.0413 (7)0.0374 (7)0.0031 (6)0.0234 (6)−0.0050 (5)
C100.0556 (8)0.0411 (7)0.0425 (7)0.0052 (6)0.0252 (7)0.0025 (6)
C110.0527 (8)0.0492 (8)0.0360 (7)−0.0079 (6)0.0220 (6)−0.0009 (6)
C120.0787 (11)0.0465 (8)0.0418 (8)−0.0045 (7)0.0323 (8)−0.0108 (6)
C130.0609 (9)0.0382 (7)0.0454 (8)−0.0004 (6)0.0275 (7)−0.0072 (6)
C140.0413 (8)0.0585 (9)0.0620 (10)−0.0193 (7)0.0162 (7)−0.0103 (8)
C150.0406 (7)0.0506 (8)0.0431 (8)−0.0029 (6)−0.0039 (6)−0.0003 (6)
C160.0305 (5)0.0305 (6)0.0351 (6)−0.0017 (4)0.0094 (5)0.0001 (5)
C170.0337 (6)0.0379 (6)0.0359 (6)−0.0024 (5)0.0108 (5)0.0017 (5)
C180.0347 (6)0.0400 (7)0.0406 (7)0.0003 (5)0.0042 (5)−0.0002 (5)
C190.0328 (7)0.0457 (8)0.0640 (10)−0.0071 (6)0.0081 (7)0.0027 (7)
C200.0453 (8)0.0647 (10)0.0719 (11)−0.0151 (7)0.0182 (8)0.0234 (9)
C210.0437 (8)0.0492 (8)0.0470 (8)−0.0054 (6)0.0113 (6)0.0152 (6)
C220.1037 (15)0.0640 (11)0.0502 (10)0.0027 (10)0.0277 (10)0.0144 (8)
C230.0342 (8)0.0782 (13)0.0957 (15)−0.0048 (8)−0.0036 (9)0.0030 (11)
N10.0293 (5)0.0279 (5)0.0341 (5)−0.0019 (4)0.0076 (4)−0.0031 (4)
O10.0621 (6)0.0396 (5)0.0481 (6)−0.0136 (5)0.0169 (5)−0.0155 (4)
O20.0531 (6)0.0367 (5)0.0643 (7)0.0024 (4)0.0204 (5)−0.0136 (5)
O30.1002 (9)0.0585 (7)0.0396 (6)0.0004 (6)0.0326 (6)0.0052 (5)
O40.0371 (6)0.0867 (9)0.0976 (10)−0.0224 (6)0.0023 (6)0.0220 (8)

Geometric parameters (Å, °)

C2—N11.4785 (15)C12—H120.9300
C2—C81.5181 (18)C13—H130.9300
C2—C31.5395 (17)C14—H14A0.9600
C2—H20.9800C14—H14B0.9600
C3—C41.5128 (19)C14—H14C0.9600
C3—C141.5250 (19)C15—H15A0.9600
C3—C151.541 (2)C15—H15B0.9600
C4—O11.2081 (15)C15—H15C0.9600
C4—C51.5053 (18)C16—C211.3811 (18)
C5—C61.5267 (17)C16—C171.3818 (17)
C5—H5A0.9700C17—C181.3847 (18)
C5—H5B0.9700C17—H170.9300
C6—N11.4791 (15)C18—C191.375 (2)
C6—C161.5117 (16)C18—H180.9300
C6—H60.9800C19—O41.3648 (17)
C7—O21.2211 (17)C19—C201.377 (2)
C7—N11.3365 (16)C20—C211.378 (2)
C7—H70.9300C20—H200.9300
C8—C91.3821 (18)C21—H210.9300
C8—C131.3877 (18)C22—O31.410 (2)
C9—C101.3831 (19)C22—H22A0.9600
C9—H90.9300C22—H22B0.9600
C10—C111.3734 (19)C22—H22C0.9600
C10—H100.9300C23—O41.415 (2)
C11—O31.3621 (17)C23—H23A0.9600
C11—C121.381 (2)C23—H23B0.9600
C12—C131.372 (2)C23—H23C0.9600
N1—C2—C8111.15 (9)C3—C14—H14A109.5
N1—C2—C3110.11 (10)C3—C14—H14B109.5
C8—C2—C3117.24 (10)H14A—C14—H14B109.5
N1—C2—H2105.8C3—C14—H14C109.5
C8—C2—H2105.8H14A—C14—H14C109.5
C3—C2—H2105.8H14B—C14—H14C109.5
C4—C3—C14111.76 (11)C3—C15—H15A109.5
C4—C3—C2110.01 (10)C3—C15—H15B109.5
C14—C3—C2110.73 (11)H15A—C15—H15B109.5
C4—C3—C15106.37 (11)C3—C15—H15C109.5
C14—C3—C15108.28 (12)H15A—C15—H15C109.5
C2—C3—C15109.55 (11)H15B—C15—H15C109.5
O1—C4—C5120.22 (12)C21—C16—C17117.89 (12)
O1—C4—C3122.55 (12)C21—C16—C6120.70 (11)
C5—C4—C3117.22 (10)C17—C16—C6121.41 (11)
C4—C5—C6116.02 (11)C16—C17—C18121.78 (12)
C4—C5—H5A108.3C16—C17—H17119.1
C6—C5—H5A108.3C18—C17—H17119.1
C4—C5—H5B108.3C19—C18—C17119.24 (13)
C6—C5—H5B108.3C19—C18—H18120.4
H5A—C5—H5B107.4C17—C18—H18120.4
N1—C6—C16111.21 (9)O4—C19—C18124.49 (15)
N1—C6—C5110.49 (10)O4—C19—C20115.74 (14)
C16—C6—C5111.18 (10)C18—C19—C20119.77 (13)
N1—C6—H6107.9C19—C20—C21120.42 (14)
C16—C6—H6107.9C19—C20—H20119.8
C5—C6—H6107.9C21—C20—H20119.8
O2—C7—N1125.80 (13)C20—C21—C16120.90 (14)
O2—C7—H7117.1C20—C21—H21119.6
N1—C7—H7117.1C16—C21—H21119.6
C9—C8—C13116.76 (12)O3—C22—H22A109.5
C9—C8—C2125.00 (11)O3—C22—H22B109.5
C13—C8—C2118.23 (12)H22A—C22—H22B109.5
C8—C9—C10122.10 (12)O3—C22—H22C109.5
C8—C9—H9118.9H22A—C22—H22C109.5
C10—C9—H9118.9H22B—C22—H22C109.5
C11—C10—C9119.78 (13)O4—C23—H23A109.5
C11—C10—H10120.1O4—C23—H23B109.5
C9—C10—H10120.1H23A—C23—H23B109.5
O3—C11—C10124.75 (14)O4—C23—H23C109.5
O3—C11—C12116.01 (12)H23A—C23—H23C109.5
C10—C11—C12119.23 (13)H23B—C23—H23C109.5
C13—C12—C11120.24 (13)C7—N1—C2119.04 (10)
C13—C12—H12119.9C7—N1—C6118.42 (10)
C11—C12—H12119.9C2—N1—C6121.82 (9)
C12—C13—C8121.86 (13)C11—O3—C22117.96 (12)
C12—C13—H13119.1C19—O4—C23118.02 (14)
C8—C13—H13119.1
N1—C2—C3—C457.08 (13)C2—C8—C13—C12−179.98 (13)
C8—C2—C3—C4−71.28 (13)N1—C6—C16—C21−120.55 (13)
N1—C2—C3—C14−178.88 (11)C5—C6—C16—C21115.87 (14)
C8—C2—C3—C1452.76 (15)N1—C6—C16—C1759.60 (15)
N1—C2—C3—C15−59.52 (13)C5—C6—C16—C17−63.98 (15)
C8—C2—C3—C15172.12 (11)C21—C16—C17—C18−0.8 (2)
C14—C3—C4—O126.68 (18)C6—C16—C17—C18179.06 (12)
C2—C3—C4—O1150.13 (12)C16—C17—C18—C190.5 (2)
C15—C3—C4—O1−91.31 (15)C17—C18—C19—O4179.89 (15)
C14—C3—C4—C5−152.76 (12)C17—C18—C19—C200.1 (2)
C2—C3—C4—C5−29.32 (15)O4—C19—C20—C21179.76 (17)
C15—C3—C4—C589.25 (13)C18—C19—C20—C21−0.4 (3)
O1—C4—C5—C6158.68 (12)C19—C20—C21—C160.2 (3)
C3—C4—C5—C6−21.86 (16)C17—C16—C21—C200.4 (2)
C4—C5—C6—N144.33 (14)C6—C16—C21—C20−179.41 (15)
C4—C5—C6—C16168.32 (10)O2—C7—N1—C25.3 (2)
N1—C2—C8—C9−96.55 (14)O2—C7—N1—C6175.84 (12)
C3—C2—C8—C931.31 (17)C8—C2—N1—C7−93.80 (13)
N1—C2—C8—C1384.08 (14)C3—C2—N1—C7134.58 (12)
C3—C2—C8—C13−148.07 (12)C8—C2—N1—C696.04 (12)
C13—C8—C9—C10−1.2 (2)C3—C2—N1—C6−35.59 (14)
C2—C8—C9—C10179.46 (13)C16—C6—N1—C751.11 (14)
C8—C9—C10—C110.9 (2)C5—C6—N1—C7175.08 (11)
C9—C10—C11—O3178.92 (14)C16—C6—N1—C2−138.67 (11)
C9—C10—C11—C12−0.1 (2)C5—C6—N1—C2−14.70 (15)
O3—C11—C12—C13−179.56 (15)C10—C11—O3—C22−9.8 (2)
C10—C11—C12—C13−0.5 (2)C12—C11—O3—C22169.20 (16)
C11—C12—C13—C80.2 (2)C18—C19—O4—C232.2 (3)
C9—C8—C13—C120.6 (2)C20—C19—O4—C23−178.04 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.972.443.3446 (16)155
C6—H6···O2ii0.982.413.3708 (16)168
C18—H18···O1iii0.932.533.3018 (17)140
C10—H10···Cg1iv0.932.903.6627 (17)140

Symmetry codes: (i) x, y, z−1; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2903).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography