PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m392–m393.
Published online 2009 March 14. doi:  10.1107/S160053680900823X
PMCID: PMC2968914

Di-μ-chromato-κ4 O:O′-bis­[bis­(phenan­throline-κ2 N,N′)cadmium(II)] dihydrate

Abstract

In the title compound, [Cd2Cr2O8(C12H8N2)4]·2H2O, which was obtained by hydro­thermal reaction of CdCO3 and phenanthroline with K2CrO4 at 393 K, two distorted Cd(N4O2) octa­hedra are linked through μ2-bridging chromate anions, forming a centrosymmetric tetra­nuclear eight-membered ring complex. The water mol­ecules link the chromate O atoms via inter­molecular O—H(...)O hydrogen bonds. These aggregates pack to a three-dimensional network through weak inter­molecular C—H(...)O and C—H(...)π hydrogen-bonding contacts.

Related literature

For the properties of multimetallic complexes, see: Costisor et al. (2001 [triangle]). For the structures of heterometallic macrocyclic rings, see: Larsen et al. (2003 [triangle]); Timco et al. (2005 [triangle]). For related structures, see: Dai et al. (2002 [triangle]); Chaudhuri et al. (1988 [triangle]); Yoshikawa et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m392-scheme1.jpg

Experimental

Crystal data

  • [Cd2Cr2O8(C12H8N2)4]·2H2O
  • M r = 1213.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m392-efi1.jpg
  • a = 11.2303 (13) Å
  • b = 13.6892 (16) Å
  • c = 14.5352 (19) Å
  • β = 91.928 (1)°
  • V = 2233.3 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.48 mm−1
  • T = 298 K
  • 0.13 × 0.08 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.830, T max = 0.930
  • 11590 measured reflections
  • 3922 independent reflections
  • 2145 reflections with I > 2σ(I)
  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.065
  • S = 0.86
  • 3922 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900823X/si2157sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900823X/si2157Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In recent decades, research on multimetallic complexes has grown in modern inorganic chemistry, because of searching for new materials, exhibiting exciting magnetic properties, electrical and optical properties (Costisor et al., 2001). But the heterometallic systems are rare because of the difficult synthesis. In contrast to the heterometallic macrocylic ring structures reported (Larsen et al., 2003 & Timco et al., 2005), we describe the synthesis and structure of the title compound, which represents a centrosymmetric heterobinuclear eight-membered ring system.

The title structure (Fig. 1) has a centrosymmetric eight-membered ring, build up of [Cd(phenanthroline)2]2+, [CrO4]2- units and two free water molecules. Each Cd atom is coordinated with four N atoms from phenanthroline ligands and two O atoms, presenting a distorted octahedral geometry. The Cr atoms are tetrahedrally coordinated. Two distorted Cd(N4O2) octahedra are linked through bridging chromate anions to form the centrosymmetric tetranuclear eight-membered ring complex. The mean Cd—O, Cr—O and Cd—N bond lengths are similar to the values reported (Dai et al., 2002, Chaudhuri et al., 1988, Yoshikawa et al., 2002). The Cr1i—O2—Cd1, O1—Cr1—O2, O2—Cd1—O1 angles are 133.1 (2)°, 109.40 (18)°, and 97.47 (13)°, respectively. Other selected geometrical parameters are given in Table 1. The dihedral angle between the phenanthroline ligands is 89.00 (1)°. The free water molecules link the chromate oxygen atoms via intermolecular O—H···O hydrogen bonds. The intermolecular C—H···O hydrogen bonds and the C—H···π interactions (Table 2) cause the crystal packing to be energetically preferable and generate a three-dimensional network as shown in Fig. 2.

Experimental

All commercially obtained reagent-grade chemicals were used without further purication. CdCO3 (3.40 g, 2.00 mmol) was dissolved in water and methanol (2:1 v/v, 30 ml), mixed with phenanthroline (6.00 g, 3.00 mmol). After stirring for 0.5 h, K2CrO4 (1.94 g, 1.00 mmol) was added to the mixture. The hydrothermal reaction was conducted at 393 K for 4 h. The yellow prism crystals were collected, after cooling and filtering (yield 1.20 g). Analysis calculated for C48H36Cd2Cr2N8O10: C 47.46, H 2.97, N 9.22%; found: C 47.44, H 3.03, N 9.20%.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.96 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The packing view of the molecules of (I) along the crystallographic a direction.

Crystal data

[Cd2Cr2O8(C12H8N2)4]·2H2OF(000) = 1208
Mr = 1213.65Dx = 1.805 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.2303 (13) ÅCell parameters from 1518 reflections
b = 13.6892 (16) Åθ = 2.3–25.0°
c = 14.5352 (19) ŵ = 1.48 mm1
β = 91.928 (1)°T = 298 K
V = 2233.3 (5) Å3Prism, yellow
Z = 20.13 × 0.08 × 0.05 mm

Data collection

Bruker SMART CCD area-detector diffractometer3922 independent reflections
Radiation source: fine-focus sealed tube2145 reflections with I > 2σ(I)
graphiteRint = 0.096
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −13→9
Tmin = 0.830, Tmax = 0.930k = −16→14
11590 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 0.86w = 1/[σ2(Fo2) + (0.0001P)2] where P = (Fo2 + 2Fc2)/3
3922 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.54305 (4)0.67292 (3)0.58619 (3)0.03350 (14)
N10.5517 (4)0.7535 (3)0.7310 (3)0.0336 (13)
N20.7407 (4)0.6723 (3)0.6487 (3)0.0345 (12)
N30.6012 (5)0.8015 (3)0.4851 (4)0.0439 (15)
N40.3768 (4)0.7747 (3)0.5434 (3)0.0359 (13)
O10.6078 (4)0.5715 (3)0.4790 (3)0.0484 (13)
O20.4197 (3)0.5701 (3)0.6521 (3)0.0407 (12)
O30.7995 (3)0.4755 (3)0.4225 (3)0.0453 (12)
O40.6869 (3)0.5992 (3)0.3082 (3)0.0482 (12)
O50.9994 (4)1.0021 (3)1.3274 (3)0.0759 (16)
H5A0.99900.96051.28400.091*
H5B0.95051.04711.31170.091*
Cr10.66961 (8)0.51967 (7)0.38910 (7)0.0325 (3)
C10.4611 (5)0.7872 (4)0.7770 (4)0.0391 (17)
H10.38480.76890.75700.047*
C20.4718 (6)0.8482 (4)0.8532 (4)0.0436 (18)
H20.40430.87060.88190.052*
C30.5821 (6)0.8746 (4)0.8852 (4)0.0431 (18)
H30.59070.91430.93680.052*
C40.6834 (5)0.8415 (4)0.8399 (4)0.0341 (15)
C50.6630 (5)0.7787 (4)0.7641 (4)0.0276 (15)
C60.7639 (5)0.7354 (4)0.7186 (4)0.0276 (15)
C70.8814 (6)0.7601 (4)0.7509 (4)0.0346 (16)
C80.9753 (6)0.7126 (4)0.7098 (4)0.0429 (18)
H81.05330.72640.72890.051*
C90.9533 (6)0.6458 (4)0.6413 (5)0.049 (2)
H91.01540.61190.61520.059*
C100.8346 (6)0.6298 (4)0.6116 (4)0.0391 (17)
H100.82060.58690.56290.047*
C110.8043 (6)0.8687 (4)0.8675 (4)0.0435 (18)
H110.81770.91340.91490.052*
C120.8964 (5)0.8294 (5)0.8249 (4)0.0423 (16)
H120.97320.84750.84370.051*
C130.7115 (6)0.8143 (5)0.4542 (4)0.053 (2)
H130.77230.77380.47660.063*
C140.7391 (7)0.8865 (5)0.3892 (5)0.060 (2)
H140.81680.89320.37000.072*
C150.6527 (6)0.9458 (5)0.3549 (5)0.052 (2)
H150.67050.99340.31190.063*
C160.5359 (6)0.9354 (5)0.3845 (4)0.0423 (18)
C170.5154 (6)0.8613 (4)0.4499 (4)0.0380 (17)
C180.3954 (5)0.8468 (4)0.4803 (4)0.0306 (15)
C190.3029 (6)0.9051 (4)0.4452 (4)0.0396 (18)
C200.1869 (6)0.8889 (5)0.4757 (4)0.050 (2)
H200.12340.92700.45400.060*
C210.1692 (5)0.8152 (5)0.5387 (5)0.0480 (18)
H210.09350.80250.55980.058*
C220.2666 (6)0.7604 (5)0.5700 (4)0.0460 (19)
H220.25350.71070.61220.055*
C230.4397 (7)0.9928 (5)0.3503 (5)0.054 (2)
H230.45401.04120.30710.065*
C240.3285 (6)0.9795 (5)0.3783 (4)0.053 (2)
H240.26711.01850.35440.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0289 (2)0.0347 (3)0.0369 (3)0.0001 (3)0.0019 (2)−0.0027 (3)
N10.021 (3)0.046 (3)0.034 (3)0.003 (3)0.003 (3)−0.002 (3)
N20.037 (3)0.032 (3)0.034 (3)0.011 (3)0.002 (3)−0.008 (3)
N30.039 (3)0.041 (4)0.053 (4)0.005 (3)0.011 (3)−0.003 (3)
N40.035 (3)0.034 (3)0.039 (4)0.002 (3)0.000 (3)0.008 (3)
O10.044 (3)0.051 (3)0.050 (3)−0.002 (2)0.007 (2)−0.018 (2)
O20.043 (3)0.037 (3)0.043 (3)−0.015 (2)0.003 (2)−0.005 (2)
O30.027 (3)0.052 (3)0.057 (3)0.010 (2)0.003 (2)0.004 (2)
O40.042 (3)0.049 (3)0.054 (3)−0.004 (2)0.003 (2)0.019 (2)
O50.079 (4)0.088 (4)0.059 (4)0.000 (3)−0.019 (3)0.011 (3)
Cr10.0274 (6)0.0340 (6)0.0361 (7)−0.0011 (5)0.0021 (5)0.0003 (5)
C10.030 (4)0.039 (4)0.048 (5)0.000 (3)0.005 (4)0.005 (3)
C20.044 (4)0.042 (5)0.046 (5)0.009 (4)0.006 (4)−0.008 (3)
C30.059 (5)0.037 (4)0.033 (4)0.008 (4)0.001 (4)−0.012 (3)
C40.044 (4)0.025 (4)0.033 (4)0.002 (3)−0.001 (3)0.002 (3)
C50.034 (4)0.021 (3)0.028 (4)0.002 (3)−0.002 (3)0.002 (3)
C60.026 (4)0.030 (4)0.027 (4)−0.008 (3)0.002 (3)−0.004 (3)
C70.032 (4)0.039 (4)0.033 (4)0.001 (3)−0.002 (3)0.002 (3)
C80.029 (4)0.053 (5)0.047 (5)−0.005 (4)−0.001 (4)0.012 (4)
C90.035 (4)0.052 (5)0.061 (5)0.007 (4)0.017 (4)0.009 (4)
C100.041 (4)0.044 (4)0.033 (4)−0.001 (4)0.009 (4)−0.001 (3)
C110.050 (5)0.043 (4)0.037 (4)−0.017 (4)−0.009 (4)−0.008 (3)
C120.033 (4)0.051 (4)0.042 (4)−0.008 (4)−0.010 (3)0.011 (4)
C130.048 (5)0.045 (5)0.067 (5)0.003 (4)0.017 (4)−0.004 (4)
C140.051 (5)0.064 (6)0.067 (6)−0.017 (5)0.023 (5)0.009 (4)
C150.063 (5)0.039 (5)0.055 (5)0.003 (4)0.014 (5)0.004 (4)
C160.057 (5)0.038 (4)0.033 (4)−0.008 (4)0.009 (4)0.001 (3)
C170.038 (4)0.036 (4)0.039 (4)0.003 (4)0.005 (4)−0.006 (3)
C180.037 (4)0.022 (4)0.033 (4)−0.004 (3)0.001 (3)−0.003 (3)
C190.048 (5)0.032 (4)0.039 (5)−0.003 (4)0.000 (4)−0.001 (3)
C200.048 (5)0.049 (5)0.053 (5)0.018 (4)−0.004 (4)−0.005 (4)
C210.032 (4)0.049 (5)0.063 (5)0.002 (4)−0.005 (4)0.007 (4)
C220.046 (5)0.052 (5)0.040 (5)−0.004 (4)0.008 (4)0.003 (4)
C230.075 (6)0.040 (5)0.049 (5)−0.005 (5)0.008 (5)0.015 (4)
C240.060 (5)0.050 (5)0.048 (5)0.004 (4)−0.006 (4)0.009 (4)

Geometric parameters (Å, °)

Cd1—O22.215 (4)C7—C81.390 (7)
Cd1—O12.226 (4)C7—C121.440 (8)
Cd1—N22.370 (5)C8—C91.367 (8)
Cd1—N12.376 (5)C8—H80.9300
Cd1—N42.394 (5)C9—C101.405 (8)
Cd1—N32.397 (5)C9—H90.9300
N1—C11.319 (6)C10—H100.9300
N1—C51.369 (7)C11—C121.336 (7)
N2—C101.334 (6)C11—H110.9300
N2—C61.353 (6)C12—H120.9300
N3—C131.344 (7)C13—C141.408 (8)
N3—C171.352 (7)C13—H130.9300
N4—C221.324 (7)C14—C151.348 (8)
N4—C181.369 (6)C14—H140.9300
O1—Cr11.660 (4)C15—C161.401 (8)
O2—Cr1i1.683 (4)C15—H150.9300
O3—Cr11.638 (4)C16—C231.412 (9)
O4—Cr11.619 (4)C16—C171.415 (8)
O5—H5A0.8501C17—C181.445 (7)
O5—H5B0.8500C18—C191.394 (8)
Cr1—O2i1.683 (4)C19—C201.408 (8)
C1—C21.388 (7)C19—C241.442 (8)
C1—H10.9300C20—C211.381 (7)
C2—C31.357 (8)C20—H200.9300
C2—H20.9300C21—C221.390 (8)
C3—C41.408 (7)C21—H210.9300
C3—H30.9300C22—H220.9300
C4—C51.410 (7)C23—C241.339 (8)
C4—C111.452 (8)C23—H230.9300
C5—C61.456 (7)C24—H240.9300
C6—C71.426 (8)
O2—Cd1—O197.47 (13)C8—C7—C6117.1 (6)
O2—Cd1—N2115.01 (15)C8—C7—C12123.9 (6)
O1—Cd1—N286.70 (15)C6—C7—C12119.0 (5)
O2—Cd1—N185.37 (15)C9—C8—C7120.3 (6)
O1—Cd1—N1154.79 (16)C9—C8—H8119.9
N2—Cd1—N169.64 (15)C7—C8—H8119.9
O2—Cd1—N489.34 (15)C8—C9—C10118.3 (6)
O1—Cd1—N4116.81 (16)C8—C9—H9120.9
N2—Cd1—N4144.46 (17)C10—C9—H9120.9
N1—Cd1—N488.19 (16)N2—C10—C9124.3 (6)
O2—Cd1—N3156.75 (17)N2—C10—H10117.9
O1—Cd1—N385.81 (15)C9—C10—H10117.9
N2—Cd1—N388.10 (17)C12—C11—C4120.0 (6)
N1—Cd1—N3101.44 (17)C12—C11—H11120.0
N4—Cd1—N368.90 (17)C4—C11—H11120.0
C1—N1—C5116.4 (5)C11—C12—C7122.6 (6)
C1—N1—Cd1127.0 (4)C11—C12—H12118.7
C5—N1—Cd1116.0 (4)C7—C12—H12118.7
C10—N2—C6116.6 (5)N3—C13—C14122.8 (6)
C10—N2—Cd1126.1 (4)N3—C13—H13118.6
C6—N2—Cd1116.1 (4)C14—C13—H13118.6
C13—N3—C17116.6 (5)C15—C14—C13119.9 (7)
C13—N3—Cd1125.1 (5)C15—C14—H14120.0
C17—N3—Cd1118.1 (4)C13—C14—H14120.0
C22—N4—C18117.9 (5)C14—C15—C16119.7 (7)
C22—N4—Cd1124.5 (4)C14—C15—H15120.2
C18—N4—Cd1117.3 (4)C16—C15—H15120.2
Cr1—O1—Cd1166.5 (2)C15—C16—C23123.3 (6)
Cr1i—O2—Cd1133.1 (2)C15—C16—C17117.0 (7)
H5A—O5—H5B107.4C23—C16—C17119.7 (6)
O4—Cr1—O3109.6 (2)N3—C17—C16124.0 (6)
O4—Cr1—O1110.4 (2)N3—C17—C18117.5 (6)
O3—Cr1—O1108.4 (2)C16—C17—C18118.5 (6)
O4—Cr1—O2i108.5 (2)N4—C18—C19122.0 (5)
O3—Cr1—O2i110.5 (2)N4—C18—C17117.9 (6)
O1—Cr1—O2i109.40 (18)C19—C18—C17120.1 (6)
N1—C1—C2124.5 (6)C18—C19—C20118.7 (6)
N1—C1—H1117.7C18—C19—C24119.2 (6)
C2—C1—H1117.7C20—C19—C24122.1 (7)
C3—C2—C1119.1 (6)C21—C20—C19118.6 (6)
C3—C2—H2120.4C21—C20—H20120.7
C1—C2—H2120.4C19—C20—H20120.7
C2—C3—C4119.7 (6)C20—C21—C22118.9 (6)
C2—C3—H3120.1C20—C21—H21120.6
C4—C3—H3120.1C22—C21—H21120.6
C3—C4—C5116.7 (6)N4—C22—C21123.9 (6)
C3—C4—C11123.4 (6)N4—C22—H22118.1
C5—C4—C11119.9 (5)C21—C22—H22118.1
N1—C5—C4123.4 (5)C24—C23—C16121.8 (6)
N1—C5—C6117.0 (5)C24—C23—H23119.1
C4—C5—C6119.6 (6)C16—C23—H23119.1
N2—C6—C7123.4 (5)C23—C24—C19120.7 (7)
N2—C6—C5117.9 (5)C23—C24—H24119.7
C7—C6—C5118.7 (5)C19—C24—H24119.7
O2—Cd1—N1—C1−55.4 (5)C11—C4—C5—N1−176.7 (5)
O1—Cd1—N1—C1−153.1 (4)C3—C4—C5—C6−175.1 (5)
N2—Cd1—N1—C1−174.2 (5)C11—C4—C5—C64.8 (9)
N4—Cd1—N1—C134.1 (5)C10—N2—C6—C72.1 (8)
N3—Cd1—N1—C1102.1 (5)Cd1—N2—C6—C7−166.0 (5)
O2—Cd1—N1—C5133.8 (4)C10—N2—C6—C5−176.5 (5)
O1—Cd1—N1—C536.1 (6)Cd1—N2—C6—C515.3 (6)
N2—Cd1—N1—C515.0 (4)N1—C5—C6—N2−1.5 (8)
N4—Cd1—N1—C5−136.7 (4)C4—C5—C6—N2177.2 (5)
N3—Cd1—N1—C5−68.6 (4)N1—C5—C6—C7179.8 (5)
O2—Cd1—N2—C10102.9 (4)C4—C5—C6—C7−1.5 (8)
O1—Cd1—N2—C106.2 (5)N2—C6—C7—C8−2.7 (9)
N1—Cd1—N2—C10177.3 (5)C5—C6—C7—C8175.9 (5)
N4—Cd1—N2—C10−127.9 (4)N2—C6—C7—C12179.1 (5)
N3—Cd1—N2—C10−79.7 (5)C5—C6—C7—C12−2.3 (9)
O2—Cd1—N2—C6−90.2 (4)C6—C7—C8—C90.2 (9)
O1—Cd1—N2—C6173.1 (4)C12—C7—C8—C9178.3 (6)
N1—Cd1—N2—C6−15.8 (4)C7—C8—C9—C102.6 (9)
N4—Cd1—N2—C638.9 (5)C6—N2—C10—C90.9 (9)
N3—Cd1—N2—C687.2 (4)Cd1—N2—C10—C9167.7 (5)
O2—Cd1—N3—C13−156.8 (4)C8—C9—C10—N2−3.3 (10)
O1—Cd1—N3—C13−57.6 (5)C3—C4—C11—C12175.7 (6)
N2—Cd1—N3—C1329.2 (5)C5—C4—C11—C12−4.2 (9)
N1—Cd1—N3—C1398.0 (5)C4—C11—C12—C70.3 (10)
N4—Cd1—N3—C13−178.5 (5)C8—C7—C12—C11−175.1 (6)
O2—Cd1—N3—C1717.3 (7)C6—C7—C12—C113.0 (10)
O1—Cd1—N3—C17116.5 (5)C17—N3—C13—C140.7 (10)
N2—Cd1—N3—C17−156.7 (5)Cd1—N3—C13—C14174.9 (5)
N1—Cd1—N3—C17−87.9 (5)N3—C13—C14—C15−0.5 (11)
N4—Cd1—N3—C17−4.4 (4)C13—C14—C15—C160.2 (11)
O2—Cd1—N4—C226.7 (5)C14—C15—C16—C23−178.3 (7)
O1—Cd1—N4—C22104.8 (5)C14—C15—C16—C17−0.2 (10)
N2—Cd1—N4—C22−128.6 (5)C13—N3—C17—C16−0.7 (9)
N1—Cd1—N4—C22−78.7 (5)Cd1—N3—C17—C16−175.3 (5)
N3—Cd1—N4—C22178.3 (5)C13—N3—C17—C18178.2 (5)
O2—Cd1—N4—C18−166.9 (4)Cd1—N3—C17—C183.6 (7)
O1—Cd1—N4—C18−68.8 (4)C15—C16—C17—N30.4 (10)
N2—Cd1—N4—C1857.8 (5)C23—C16—C17—N3178.6 (6)
N1—Cd1—N4—C18107.8 (4)C15—C16—C17—C18−178.5 (6)
N3—Cd1—N4—C184.8 (4)C23—C16—C17—C18−0.3 (9)
O2—Cd1—O1—Cr1168.8 (11)C22—N4—C18—C190.9 (9)
N2—Cd1—O1—Cr1−76.4 (11)Cd1—N4—C18—C19174.9 (4)
N1—Cd1—O1—Cr1−96.2 (12)C22—N4—C18—C17−178.9 (5)
N4—Cd1—O1—Cr175.7 (11)Cd1—N4—C18—C17−4.9 (7)
N3—Cd1—O1—Cr111.9 (11)N3—C17—C18—N40.8 (8)
O1—Cd1—O2—Cr1i−35.6 (3)C16—C17—C18—N4179.8 (5)
N2—Cd1—O2—Cr1i−125.5 (3)N3—C17—C18—C19−178.9 (6)
N1—Cd1—O2—Cr1i169.6 (3)C16—C17—C18—C190.1 (9)
N4—Cd1—O2—Cr1i81.3 (3)N4—C18—C19—C20−0.1 (9)
N3—Cd1—O2—Cr1i61.2 (5)C17—C18—C19—C20179.7 (5)
Cd1—O1—Cr1—O4−24.0 (12)N4—C18—C19—C24−179.6 (5)
Cd1—O1—Cr1—O396.1 (11)C17—C18—C19—C240.2 (9)
Cd1—O1—Cr1—O2i−143.3 (11)C18—C19—C20—C21−0.6 (9)
C5—N1—C1—C22.4 (9)C24—C19—C20—C21178.9 (6)
Cd1—N1—C1—C2−168.3 (4)C19—C20—C21—C220.4 (10)
N1—C1—C2—C3−1.4 (10)C18—N4—C22—C21−1.0 (10)
C1—C2—C3—C41.2 (10)Cd1—N4—C22—C21−174.6 (5)
C2—C3—C4—C5−2.2 (9)C20—C21—C22—N40.4 (11)
C2—C3—C4—C11177.9 (6)C15—C16—C23—C24178.3 (7)
C1—N1—C5—C4−3.5 (8)C17—C16—C23—C240.2 (11)
Cd1—N1—C5—C4168.3 (4)C16—C23—C24—C190.0 (11)
C1—N1—C5—C6175.1 (5)C18—C19—C24—C23−0.2 (10)
Cd1—N1—C5—C6−13.1 (6)C20—C19—C24—C23−179.7 (6)
C3—C4—C5—N13.4 (9)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O2ii0.852.132.849 (6)142
O5—H5B···O4iii0.852.403.122 (6)144
C2—H2···O3iv0.932.493.274 (7)142
C3—H3···O3iii0.932.503.352 (8)153
C9—H9···O3v0.932.483.391 (7)168
C10—H10···O30.932.553.478 (7)175
C12—H12···O4ii0.932.583.423 (7)151
C20—H20···O5vi0.932.493.344 (8)152
C8—H8···Cg2ii0.933.073.638 (7)113
C12—H12···Cg3ii0.933.033.277 (7)95
C23—H23···Cg1vii0.932.613.509 (7)164

Symmetry codes: (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) x−1/2, −y+3/2, z+1/2; (v) −x+2, −y+1, −z+1; (vi) x−1, y, z−1; (vii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2157).

References

  • Bruker (1997). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chaudhuri, P., Winter, M., Wieghardt, K., Gehring, S., Haase, W., Nuber, B. & Weiss, J. (1988). Inorg. Chem.27, 1564–1569.
  • Costisor, O., Mereiter, K., Julve, M., Lloret, F., Journaux, Y., Linert, W. & Andruh, M. (2001). Inorg. Chim. Acta, 324, 352–358.
  • Dai, J. C., Wu, X. T., Fu, Z. Y., Cui, C. P., Hu, S. M., Du, W. X., Wu, L. M., Zhang, H. H. & Sun, R. Q. (2002). Inorg. Chem.41, 1391–1396. [PubMed]
  • Larsen, F. K., McInnes, E. J., Mlkami, H. E., Overgaard, J., Piligkos, S., Rajaraman, G., Rentschler, E., Smith, A. A., Smith, G. M., Boote, V., Jennings, M., Timco, G. A. & Winpenny, R. E. P. (2003). Angew. Chem. Int. Ed.42, 101–105. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Timco, G. A., Batsanov, A. S., Larsen, F. K., Muryn, C. A., Overgaard, J., Teat, S. J. & Winpenny, R. E. P. (2005). Chem. Commun. pp. 3649–3651. [PubMed]
  • Yoshikawa, H., Nishikiori, S., Watanabe, T., Ishida, T., Watanabe, G., Murakami, M., Suwinska, K., Luboradzki, R. & Lipkowski, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1907–1917.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography