PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o814.
Published online 2009 March 25. doi:  10.1107/S160053680900899X
PMCID: PMC2968911

3α,4α-Ep­oxy-5α-androstan-17β-yl acetate

Abstract

The title compound, C21H32O3, results from modifications of the A and D rings of the aromatase substrate androstenedione. Ring A adopts a conformation between 10β-sofa and 1α,10β half-chair. Rings B and C are in slightly flattened chair conformations. Ring D approaches a 13β-envelope conformation, probably due to the acet­oxy substituent, and shows a very short Csp 3—Csp 3 bond next to the epoxide ring, which is characteristic of 3–4 epoxides. .

Related literature

For the antitumor and anti-aromatase activity of aromatase substrate derivatives, see: Cepa et al. (2005 [triangle]). For related structures, see: Paixão et al. (1997 [triangle]); Andrade et al. (1997 [triangle]). For bond-length data,, see: Allen et al. (1987 [triangle]). For asymmetry, pseudo-rotation and puckering parameters, see: Duax & Norton (1975 [triangle]); Cremer & Pople (1975 [triangle]); Altona et al. (1968 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o814-scheme1.jpg

Experimental

Crystal data

  • C21H32O3
  • M r = 332.47
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o814-efi1.jpg
  • a = 6.2760 (2) Å
  • b = 11.7272 (19) Å
  • c = 25.0888 (9) Å
  • V = 1846.5 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.61 mm−1
  • T = 293 K
  • 0.36 × 0.20 × 0.12 mm

Data collection

  • Enraf–Nonius MACH-3 diffractometer
  • Absorption correction: none
  • 2661 measured reflections
  • 2146 independent reflections
  • 1715 reflections with I > 2σ(I)
  • R int = 0.050
  • 3 standard reflections every 300 reflections intensity decay: 1.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.135
  • S = 1.03
  • 2146 reflections
  • 221 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.18 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 0 Friedel pairs
  • Flack parameter: −0.1 (5)

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1997 [triangle]) and PLATON Spek (2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900899X/kp2201sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900899X/kp2201Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia.

supplementary crystallographic information

Comment

Recently, a new series of steroids, which result from modifications in the A– and D-rings of the aromatase substrate, androstenedione, were designed, synthesized and evaluated for their anti-tumour and anti-aromatase activity (Cepa et al., 2005). The researches have considered three main structural features for the drug-enzyme interactions, namely, the planarity of the A-ring, the 5α-stereochemistry and the integrity of the cyclopentanone D-ring. In the present work, we are focused on the effect of some refined modifications in the original C–17 carbonyl group in the D-ring of steroids in enzyme inhibition. This study is a contribution to the understanding of the role of the D-ring substitution pattern and its structure in the inhibition of aromatase. Under this project, the title compound (I) was synthesized. In order to establish the conformation of (I), the X-ray structure was determined (Fig. 1). Atomic distances are within expected values (Allen et al., 1987) except for the C2–C3 bond which is much shorter [1.482 (5) Å] than the determined average value for Csp3–Csp3 bond lengths in the molecule [1.532 (16) Å]. This is probably characteristic of 3–4 epoxides since similar values [1.494 (4) and 1.484 (5) Å] were obtained for two related structures (Paixão et al., 1997 and Andrade et al., 1997). The ring A [C1→C10] is severely distorted assuming a conformation intermediate between10β-sofa and 1α,10β-half chair [asymmetry parametres (Duax & Norton, 1975): ΔCs(3)=11.4 (3), ΔC2(3,4)=14.8 (4) and ΔC2(1,2)=53.5 (4)°]. Rings B [C5→C10] and C [C8→-C14] have slightly flattened chair conformations evidenced by the average values of their torsion angles [56 (2)° for both]. The five member ring D [C13→C17] assumes a conformation intermediate between 13β-envelope and 13β,14α-half chair, probably due to the acetoxy substituent [puckering parametres (Cremer & Pople, 1975) q2=0.477 (3)Å and [var phi]2=188.6 (4)°; pseudo-rotation (Altona et al., 1968) and asymmetry parameters (Duax & Norton, 1975): Δ=18.8 (4), [var phi]m=48.5 (2), ΔCs(13)=8.9 (3), ΔC2(13,14)=12.7 (3) and ΔCs(14)=27.2 (3)°). The distance between terminal O atoms is 11.204 (3)°. A pseudo-torsion angle C19–C10···C13–C18 of 1.6 (2) ° evidences that the molecule is not twisted. The dihedral angle between the least-squares plane of the four non-H atoms of the acetate group and that of ring D is 65.04 (17)°. The crystal packing is determined by van der Waals interactions.

Experimental

To a solution of 5α-androst-3-en-17β-yl acetate (308 mg, 0.97 mmol) in methylene chloride (5.0 ml), a solution of performic acid (0.15 ml of HCOOH 98–100% and 0.4 ml of H2O2 35%) was added and the reaction stirred overnight until complete transformation of starting material. Methylene chloride (150 ml) was added and the organic layer was washed with 10% NaHCO3 (2x100 ml) and water (4x100 ml) and then dried over anhydrous MgSO4. After filtration and solvent evaporation to dryness, the almost pure title compound was obtained as a white solid (296 mg, 92%). Column chromatography (silica gel 60 with 95: 5 to 95: 10 mixtures of petroleum ether 40–60 °C and ethyl acetate) or crystallization from ethyl acetate n–hexane, yielded analytical samples: Mp 461–463 K; IR νmax(KBr) cm-1: 1732 (C?O); 1H NMR (300 MHz, CDCl3) δ: 0.77 (3H, s, 18-H3)*, 0.78 (3H, s, 19-H3)*, 2.03 (3H, s, CH3COO), 2.69 (1H, d, J4β,5α=3.9, 4β-H), 3.16 (1H, dd, J3β,2α=3.0, J3β,2β=3.0, 3β-H), 4.58 (1H, dd, J17α,16α=9.0, J17α,16β=7.8, 17α-H); 13C NMR (75.6 MHz, DMSO-d6) δ: 12.1 (C-19), 13.4 (C-18), 20.7, 21.2, 21.3, 23.4, 26.6, 27.5, 30.4, 31.4, 34.1, 35.1, 36.8, 42.6, 46.7, 50.5 52.1**, 52.5 (C-4)**, 55.8 (C-3), 82.7 (C-17); 171.2 (C?O); EIMS m/z 332 (M+, 87%). *,** Signals may be interchangeable.

Refinement

All hydrogen atoms were refined as riding on their parent atoms using SHELXL97. The absolute configuration was not determined from the X-ray data but was known from the synthesis route. Friedel pairs were merged before refinement.

Figures

Fig. 1.
ORTEPII (Johnson, 1976) of (I). Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C21H32O3Dx = 1.196 Mg m3
Mr = 332.47Cu Kα radiation, λ = 1.54180 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 6.2760 (2) Åθ = 13.4–28.2°
b = 11.7272 (19) ŵ = 0.61 mm1
c = 25.0888 (9) ÅT = 293 K
V = 1846.5 (3) Å3Truncated pyramid, colourless
Z = 40.36 × 0.20 × 0.12 mm
F(000) = 728

Data collection

Enraf–Nonius MACH-3 diffractometerRint = 0.050
Radiation source: fine-focus sealed tubeθmax = 73.8°, θmin = 3.5°
graphiteh = −6→7
Profile data from ω–2θ scansk = 0→14
2661 measured reflectionsl = 0→31
2146 independent reflections3 standard reflections every 300 reflections
1715 reflections with I > 2σ(I) intensity decay: 1.3%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044w = 1/[σ2(Fo2) + (0.0886P)2 + 0.2976P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max = 0.004
S = 1.03Δρmax = 0.23 e Å3
2146 reflectionsΔρmin = −0.18 e Å3
221 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0030 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 0 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.1 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O30.6940 (5)0.54519 (19)0.50056 (8)0.0627 (7)
O17A1.1217 (4)0.38347 (16)0.12529 (7)0.0536 (6)
O17B1.2588 (5)0.52535 (19)0.07703 (9)0.0669 (7)
C10.9480 (5)0.3851 (3)0.42667 (10)0.0481 (7)
H1A1.04060.32370.41500.058*
H1B1.03400.45350.42980.058*
C20.8561 (6)0.3552 (3)0.48152 (11)0.0565 (8)
H2A0.81670.27520.48160.068*
H2B0.96670.36550.50810.068*
C30.6677 (6)0.4235 (3)0.49734 (11)0.0529 (8)
H30.57530.38920.52440.063*
C40.5617 (5)0.4987 (3)0.45865 (10)0.0480 (7)
H40.40750.50830.46300.058*
C50.6477 (5)0.5113 (2)0.40261 (9)0.0381 (6)
H50.75000.57440.40380.046*
C60.4757 (5)0.5465 (2)0.36317 (10)0.0436 (6)
H6A0.40180.61340.37630.052*
H6B0.37260.48540.35940.052*
C70.5761 (5)0.5727 (2)0.30914 (10)0.0431 (6)
H7A0.66660.63930.31240.052*
H7B0.46430.59040.28370.052*
C80.7080 (4)0.4730 (2)0.28806 (9)0.0338 (5)
H80.61140.40900.28120.041*
C90.8761 (4)0.4339 (2)0.32915 (9)0.0340 (5)
H90.97030.49930.33520.041*
C100.7745 (4)0.4048 (2)0.38411 (9)0.0352 (5)
C111.0165 (4)0.3385 (2)0.30642 (10)0.0407 (6)
H11A0.93060.27040.30180.049*
H11B1.12820.32090.33180.049*
C121.1185 (5)0.3702 (3)0.25284 (10)0.0429 (6)
H12A1.21720.43290.25810.051*
H12B1.19830.30560.23930.051*
C130.9502 (4)0.4047 (2)0.21221 (9)0.0355 (6)
C140.8196 (4)0.5035 (2)0.23599 (9)0.0359 (6)
H140.92180.56390.24460.043*
C150.6882 (5)0.5471 (3)0.18884 (10)0.0501 (7)
H15A0.65080.62670.19350.060*
H15B0.55870.50280.18460.060*
C160.8385 (5)0.5311 (3)0.14039 (10)0.0496 (7)
H16A0.76860.48790.11250.060*
H16B0.88190.60440.12610.060*
C171.0306 (5)0.4658 (2)0.16230 (10)0.0427 (6)
H171.14110.52060.17260.051*
C17A1.2337 (5)0.4256 (3)0.08422 (11)0.0496 (7)
C17B1.3214 (8)0.3334 (3)0.05006 (14)0.0751 (12)
H17A1.41470.36590.02380.090*
H17B1.20660.29430.03260.090*
H17C1.39960.28050.07170.090*
C180.8135 (6)0.3021 (2)0.19638 (12)0.0507 (7)
H18A0.90210.24500.18020.061*
H18B0.70620.32580.17150.061*
H18C0.74640.27100.22750.061*
C190.6299 (5)0.2992 (2)0.38040 (11)0.0433 (6)
H19A0.71630.23180.37870.052*
H19B0.54350.30430.34890.052*
H19C0.53980.29570.41130.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O30.0852 (18)0.0598 (13)0.0431 (10)−0.0031 (14)−0.0105 (12)−0.0122 (10)
O17A0.0745 (15)0.0438 (10)0.0426 (10)0.0005 (11)0.0153 (11)−0.0037 (9)
O17B0.0881 (18)0.0506 (12)0.0620 (13)−0.0109 (14)0.0256 (14)0.0019 (11)
C10.0472 (15)0.0599 (17)0.0371 (13)0.0056 (15)−0.0072 (13)0.0053 (13)
C20.066 (2)0.0656 (19)0.0380 (13)0.0059 (18)−0.0084 (15)0.0076 (13)
C30.066 (2)0.0574 (17)0.0348 (13)−0.0033 (17)0.0006 (14)−0.0005 (12)
C40.0508 (16)0.0553 (16)0.0378 (13)0.0003 (15)0.0003 (13)−0.0072 (12)
C50.0395 (14)0.0380 (13)0.0368 (12)−0.0002 (12)−0.0013 (11)0.0000 (10)
C60.0413 (14)0.0473 (14)0.0421 (13)0.0122 (13)0.0042 (12)0.0019 (11)
C70.0446 (15)0.0449 (14)0.0397 (13)0.0113 (13)0.0003 (12)0.0080 (11)
C80.0317 (11)0.0353 (12)0.0343 (11)0.0004 (11)−0.0021 (10)0.0025 (9)
C90.0315 (11)0.0355 (12)0.0349 (11)−0.0004 (11)−0.0032 (10)0.0012 (10)
C100.0368 (13)0.0347 (12)0.0340 (11)0.0015 (12)−0.0027 (11)0.0032 (9)
C110.0394 (13)0.0445 (14)0.0381 (12)0.0095 (13)−0.0041 (11)0.0034 (11)
C120.0380 (14)0.0496 (15)0.0411 (13)0.0068 (13)0.0014 (12)−0.0026 (11)
C130.0383 (13)0.0330 (12)0.0351 (12)−0.0018 (11)−0.0009 (11)−0.0022 (10)
C140.0362 (13)0.0359 (12)0.0357 (12)0.0005 (11)−0.0028 (11)0.0024 (10)
C150.0516 (16)0.0585 (17)0.0401 (13)0.0086 (15)−0.0038 (14)0.0099 (13)
C160.0633 (19)0.0504 (15)0.0351 (12)0.0043 (16)−0.0023 (13)0.0052 (12)
C170.0508 (15)0.0402 (13)0.0372 (12)−0.0050 (14)0.0065 (12)−0.0037 (11)
C17A0.0558 (18)0.0517 (16)0.0414 (13)−0.0010 (15)0.0088 (14)−0.0001 (12)
C17B0.110 (3)0.056 (2)0.0590 (19)0.011 (2)0.030 (2)−0.0007 (16)
C180.0618 (19)0.0430 (14)0.0474 (15)−0.0150 (15)−0.0002 (15)−0.0022 (12)
C190.0489 (15)0.0384 (13)0.0427 (13)−0.0039 (13)0.0024 (13)0.0039 (11)

Geometric parameters (Å, °)

O3—C31.439 (4)C9—H90.9800
O3—C41.447 (3)C10—C191.537 (4)
O17A—C17A1.342 (3)C11—C121.535 (4)
O17A—C171.457 (3)C11—H11A0.9700
O17B—C17A1.194 (4)C11—H11B0.9700
C1—C21.533 (4)C12—C131.523 (4)
C1—C101.543 (4)C12—H12A0.9700
C1—H1A0.9700C12—H12B0.9700
C1—H1B0.9700C13—C171.528 (3)
C2—C31.482 (5)C13—C181.531 (4)
C2—H2A0.9700C13—C141.539 (4)
C2—H2B0.9700C14—C151.530 (3)
C3—C41.471 (4)C14—H140.9800
C3—H30.9800C15—C161.550 (4)
C4—C51.513 (4)C15—H15A0.9700
C4—H40.9800C15—H15B0.9700
C5—C61.521 (4)C16—C171.530 (4)
C5—C101.553 (4)C16—H16A0.9700
C5—H50.9800C16—H16B0.9700
C6—C71.526 (4)C17—H170.9800
C6—H6A0.9700C17A—C17B1.485 (4)
C6—H6B0.9700C17B—H17A0.9600
C7—C81.526 (4)C17B—H17B0.9600
C7—H7A0.9700C17B—H17C0.9600
C7—H7B0.9700C18—H18A0.9600
C8—C141.525 (3)C18—H18B0.9600
C8—C91.545 (3)C18—H18C0.9600
C8—H80.9800C19—H19A0.9600
C9—C111.534 (4)C19—H19B0.9600
C9—C101.557 (3)C19—H19C0.9600
C3—O3—C461.3 (2)C9—C11—H11A109.0
C17A—O17A—C17116.8 (2)C12—C11—H11A109.0
C2—C1—C10112.9 (3)C9—C11—H11B109.0
C2—C1—H1A109.0C12—C11—H11B109.0
C10—C1—H1A109.0H11A—C11—H11B107.8
C2—C1—H1B109.0C13—C12—C11111.2 (2)
C10—C1—H1B109.0C13—C12—H12A109.4
H1A—C1—H1B107.8C11—C12—H12A109.4
C3—C2—C1114.6 (3)C13—C12—H12B109.4
C3—C2—H2A108.6C11—C12—H12B109.4
C1—C2—H2A108.6H12A—C12—H12B108.0
C3—C2—H2B108.6C12—C13—C17116.4 (2)
C1—C2—H2B108.6C12—C13—C18110.7 (2)
H2A—C2—H2B107.6C17—C13—C18110.0 (2)
O3—C3—C459.62 (19)C12—C13—C14108.0 (2)
O3—C3—C2117.4 (3)C17—C13—C1498.1 (2)
C4—C3—C2120.6 (3)C18—C13—C14113.2 (2)
O3—C3—H3115.8C8—C14—C15119.5 (2)
C4—C3—H3115.8C8—C14—C13113.7 (2)
C2—C3—H3115.8C15—C14—C13103.8 (2)
O3—C4—C359.08 (18)C8—C14—H14106.3
O3—C4—C5115.7 (3)C15—C14—H14106.3
C3—C4—C5120.7 (3)C13—C14—H14106.3
O3—C4—H4116.3C14—C15—C16103.8 (2)
C3—C4—H4116.3C14—C15—H15A111.0
C5—C4—H4116.3C16—C15—H15A111.0
C4—C5—C6112.2 (2)C14—C15—H15B111.0
C4—C5—C10112.4 (2)C16—C15—H15B111.0
C6—C5—C10112.8 (2)H15A—C15—H15B109.0
C4—C5—H5106.3C17—C16—C15105.0 (2)
C6—C5—H5106.3C17—C16—H16A110.8
C10—C5—H5106.3C15—C16—H16A110.8
C5—C6—C7109.8 (2)C17—C16—H16B110.8
C5—C6—H6A109.7C15—C16—H16B110.8
C7—C6—H6A109.7H16A—C16—H16B108.8
C5—C6—H6B109.7O17A—C17—C13109.9 (2)
C7—C6—H6B109.7O17A—C17—C16114.3 (2)
H6A—C6—H6B108.2C13—C17—C16105.6 (2)
C6—C7—C8112.2 (2)O17A—C17—H17109.0
C6—C7—H7A109.2C13—C17—H17109.0
C8—C7—H7A109.2C16—C17—H17109.0
C6—C7—H7B109.2O17B—C17A—O17A123.1 (3)
C8—C7—H7B109.2O17B—C17A—C17B125.2 (3)
H7A—C7—H7B107.9O17A—C17A—C17B111.7 (3)
C14—C8—C7111.5 (2)C17A—C17B—H17A109.5
C14—C8—C9109.1 (2)C17A—C17B—H17B109.5
C7—C8—C9111.5 (2)H17A—C17B—H17B109.5
C14—C8—H8108.2C17A—C17B—H17C109.5
C7—C8—H8108.2H17A—C17B—H17C109.5
C9—C8—H8108.2H17B—C17B—H17C109.5
C11—C9—C8111.17 (19)C13—C18—H18A109.5
C11—C9—C10113.9 (2)C13—C18—H18B109.5
C8—C9—C10112.1 (2)H18A—C18—H18B109.5
C11—C9—H9106.4C13—C18—H18C109.5
C8—C9—H9106.4H18A—C18—H18C109.5
C10—C9—H9106.4H18B—C18—H18C109.5
C19—C10—C1109.8 (2)C10—C19—H19A109.5
C19—C10—C5111.3 (2)C10—C19—H19B109.5
C1—C10—C5106.0 (2)H19A—C19—H19B109.5
C19—C10—C9111.4 (2)C10—C19—H19C109.5
C1—C10—C9110.9 (2)H19A—C19—H19C109.5
C5—C10—C9107.36 (19)H19B—C19—H19C109.5
C9—C11—C12112.8 (2)
C10—C1—C2—C3−42.1 (4)C11—C9—C10—C5177.3 (2)
C4—O3—C3—C2111.1 (3)C8—C9—C10—C5−55.4 (3)
C1—C2—C3—O3−59.3 (4)C8—C9—C11—C1253.4 (3)
C1—C2—C3—C49.8 (4)C10—C9—C11—C12−178.8 (2)
C3—O3—C4—C5−111.8 (3)C9—C11—C12—C13−55.7 (3)
C2—C3—C4—O3−105.8 (4)C11—C12—C13—C17165.4 (2)
O3—C3—C4—C5103.4 (3)C11—C12—C13—C18−68.1 (3)
C2—C3—C4—C5−2.4 (5)C11—C12—C13—C1456.4 (3)
O3—C4—C5—C6−137.4 (3)C7—C8—C14—C15−55.3 (3)
C3—C4—C5—C6154.8 (3)C9—C8—C14—C15−178.9 (2)
O3—C4—C5—C1094.2 (3)C7—C8—C14—C13−178.4 (2)
C3—C4—C5—C1026.4 (4)C9—C8—C14—C1357.9 (3)
C4—C5—C6—C7172.8 (2)C12—C13—C14—C8−59.6 (3)
C10—C5—C6—C7−59.0 (3)C17—C13—C14—C8179.2 (2)
C5—C6—C7—C855.4 (3)C18—C13—C14—C863.4 (3)
C6—C7—C8—C14−176.0 (2)C12—C13—C14—C15169.0 (2)
C6—C7—C8—C9−53.8 (3)C17—C13—C14—C1547.8 (2)
C14—C8—C9—C11−53.0 (3)C18—C13—C14—C15−68.0 (3)
C7—C8—C9—C11−176.7 (2)C8—C14—C15—C16−162.5 (2)
C14—C8—C9—C10178.26 (19)C13—C14—C15—C16−34.7 (3)
C7—C8—C9—C1054.6 (3)C14—C15—C16—C177.2 (3)
C2—C1—C10—C19−56.1 (3)C17A—O17A—C17—C13−168.1 (2)
C2—C1—C10—C564.3 (3)C17A—O17A—C17—C1673.4 (3)
C2—C1—C10—C9−179.5 (2)C12—C13—C17—O17A78.1 (3)
C4—C5—C10—C1964.4 (3)C18—C13—C17—O17A−48.7 (3)
C6—C5—C10—C19−63.7 (3)C14—C13—C17—O17A−167.0 (2)
C4—C5—C10—C1−54.9 (3)C12—C13—C17—C16−158.1 (2)
C6—C5—C10—C1177.0 (2)C18—C13—C17—C1675.1 (3)
C4—C5—C10—C9−173.4 (2)C14—C13—C17—C16−43.3 (2)
C6—C5—C10—C958.5 (3)C15—C16—C17—O17A144.0 (3)
C11—C9—C10—C19−60.6 (3)C15—C16—C17—C1323.0 (3)
C8—C9—C10—C1966.7 (3)C17—O17A—C17A—O17B−0.7 (5)
C11—C9—C10—C162.0 (3)C17—O17A—C17A—C17B178.9 (3)
C8—C9—C10—C1−170.7 (2)C19—C10—C13—C181.6 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2201).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32.
  • Andrade, L. C. R., Paixão, J. A., de Almeida, M. J., Tavares da Silva, E. J., Sá e Melo, M. L. & Campos Neves, A. S. (1997). Acta Cryst. C53, 938–940.
  • Cepa, M. M. D. S., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. & Teixeira, N. A. A. (2005). J. Med. Chem.48, 6379–6385. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroids Structure, Vol. 1. New York: Plenum.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Paixão, J. A., Ramos Silva, M., de Almeida, M. J., Tavares da Silva, E. J., Sá e Melo, M. L. & Campos Neves, A. S. (1997). Acta Cryst. C53, 347–349.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (1997). HELENA University of Utrecht, The Netherlands.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography