PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o933.
Published online 2009 March 31. doi:  10.1107/S1600536809011143
PMCID: PMC2968909

Bis(melaminium) tartrate dihydrate

Abstract

In the title compound, 2C3H7N6 +·C4H4O6 2−·2H2O, in which the complete anion is generated by crystallographic twofold symmetry, there are O—H(...)O, N—H(...)O and N—H(...)N hydrogen-bonding inter­actions between neighbouring moieties, forming layers parallel to the bc plane. In addition, π–π contacts [centroid–centroid distance = 3.6541 (9) Å] between the six-membered rings of the melamine cations are observed.

Related literature

For general background, see: Row (1999 [triangle]); Krische & Lehn (2000 [triangle]); Sherrington & Taskinen (2001 [triangle]); Marchewka et al. (2003 [triangle]); Thushari et al. (2005 [triangle]). For related structures, see: Udaya Lakshmi et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o933-scheme1.jpg

Experimental

Crystal data

  • 2C3H7N6 +·C4H4O6 2−·2H2O
  • M r = 436.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o933-efi1.jpg
  • a = 7.6963 (9) Å
  • b = 21.955 (3) Å
  • c = 10.7405 (12) Å
  • β = 98.179 (6)°
  • V = 1796.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 296 K
  • 0.26 × 0.22 × 0.12 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multiscan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.963, T max = 0.980
  • 13436 measured reflections
  • 2047 independent reflections
  • 1712 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.108
  • S = 1.00
  • 2047 reflections
  • 166 parameters
  • 15 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011143/at2740sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011143/at2740Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Melamine and its organic and inorganic counterparts can develop supramolecular assemblies via multiple hydrogen bonds (Row, 1999; Krische & Lehn, 2000; Sherrington & Taskinen, 2001; Marchewka et al., 2003), while tartaric acid is a small organic molecule [C4H4O6] with a bewildering array of ligation possibilities (Thushari et al., 2005). Herein we report the synthesis and crystal structure of the title compound (I).

In (I) (Fig. 1), the melaminium cations form infinite floors via N—H···N hydrogen bonds and the D-tartrate anions link pair with waters via O—H···O form floors lying between two floors of melaminium. Furthermore, the N—H···O hydrogen bonds connected the neighboring cations floors and anions floors is together into a three-dimensional network. We found that the architecture of compound (I) is similar to bis (melaminium) L– tartrate 2.5-hydrate (Udaya Lakshmi et al., 2006) but not the same, which indicate that using different stereo-chemical configurations can give different three-dimensional arrangements. In addition, π–π contacts [centroid-centroid distance 3.6541 (9) Å] between the six-membered rings of the melamine moieties are observed.

Experimental

Compound (I) is formed by hydrothermal reaction of D-tartaric acid (1.5 mmol) and Melamine (1 mmol) in 15 ml water for 2 days at 533 K.

Refinement

The H atoms bonded to C atoms were positioned geometrically [C—H 0.96 Å Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and their positions were refined isotropically, with O—H distances fixed by O—H = 0.85 (2) Å and H ··· H = 1.30 (2) Å, their displacement parameters were set to 1.5Ueq(O). The H atoms bonded to N atoms were located in a difference Fourier maps and their positions were refined isotropically, with N—H distances fixed by N—H = 0.90 (2) Å and H ··· H = 1.56 (2) Å, their displacement parameters were set to 1.2Ueq(N).

Figures

Fig. 1.
View of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids plotted at 30% probability level. [The atoms labelled with 'A' are related to the center of inversion].
Fig. 2.
Packing diagram for compound (I). The O—H···O and O—H···N interactions are depicted by dashed lines.

Crystal data

2C3H7N6+·C4H4O62·2H2OF(000) = 920
Mr = 436.38Dx = 1.621 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4811 reflections
a = 7.6963 (9) Åθ = 1.9–27.5°
b = 21.955 (3) ŵ = 0.14 mm1
c = 10.7405 (12) ÅT = 296 K
β = 98.179 (6)°Block, colourless
V = 1796.4 (4) Å30.26 × 0.22 × 0.12 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer2047 independent reflections
Radiation source: fine-focus sealed tube1712 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→10
Tmin = 0.963, Tmax = 0.980k = −27→28
13436 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.059P)2 + 0.9299P] where P = (Fo2 + 2Fc2)/3
2047 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.25 e Å3
15 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.25143 (17)0.05132 (5)0.11300 (12)0.0603 (3)
O20.17077 (17)−0.04576 (5)0.08785 (10)0.0535 (3)
O30.15841 (13)0.05730 (4)0.33946 (9)0.0394 (3)
H30.158 (2)0.0508 (7)0.4193 (11)0.047*
N10.06055 (18)0.17081 (6)0.04393 (13)0.0470 (3)
H1NA0.074 (2)0.1308 (6)0.0459 (17)0.056*
H1NB−0.004 (2)0.1902 (7)−0.0177 (15)0.056*
N20.23582 (16)0.17105 (6)0.23551 (12)0.0428 (3)
H2NA0.233 (2)0.1306 (7)0.2342 (16)0.051*
N30.4140 (2)0.17049 (7)0.42646 (15)0.0558 (4)
H3NA0.407 (2)0.1308 (7)0.4247 (18)0.067*
H3NB0.477 (2)0.1917 (8)0.4890 (16)0.067*
N40.32789 (15)0.26210 (5)0.33724 (11)0.0373 (3)
N50.22621 (18)0.35022 (5)0.24256 (11)0.0451 (3)
H5NA0.157 (2)0.3702 (8)0.1812 (13)0.054*
H5NB0.282 (2)0.3704 (8)0.3088 (13)0.054*
N60.13898 (15)0.26268 (5)0.13787 (10)0.0353 (3)
C10.18246 (18)0.00368 (6)0.14673 (13)0.0392 (3)
C20.09995 (16)0.00520 (5)0.26757 (11)0.0308 (3)
H2A0.1329−0.03090.31570.037*
C30.23110 (16)0.29059 (6)0.23929 (11)0.0338 (3)
C40.14503 (16)0.20248 (6)0.13831 (13)0.0352 (3)
C50.32593 (17)0.20212 (6)0.33379 (13)0.0386 (3)
O1W0.45183 (14)0.06665 (5)−0.06993 (11)0.0465 (3)
H1WA0.391 (2)0.0544 (8)−0.0137 (16)0.056*
H1WB0.535 (2)0.0446 (8)−0.0730 (17)0.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0750 (8)0.0567 (7)0.0575 (7)0.0020 (6)0.0378 (6)0.0128 (6)
O20.0879 (8)0.0446 (6)0.0312 (5)0.0254 (5)0.0197 (5)0.0046 (4)
O30.0533 (6)0.0362 (5)0.0272 (5)−0.0122 (4)0.0010 (4)0.0008 (4)
N10.0582 (8)0.0324 (6)0.0480 (8)−0.0069 (5)−0.0006 (6)−0.0048 (5)
N20.0496 (7)0.0278 (6)0.0494 (7)0.0002 (5)0.0013 (5)0.0020 (5)
N30.0641 (8)0.0382 (7)0.0591 (9)0.0069 (6)−0.0120 (7)0.0110 (6)
N40.0433 (6)0.0337 (6)0.0333 (6)0.0020 (4)0.0003 (5)0.0027 (4)
N50.0658 (8)0.0288 (6)0.0358 (7)−0.0001 (5)−0.0097 (6)0.0001 (5)
N60.0434 (6)0.0308 (6)0.0310 (6)−0.0022 (4)0.0033 (5)0.0001 (4)
C10.0454 (7)0.0420 (8)0.0320 (7)0.0151 (6)0.0118 (5)0.0100 (5)
C20.0422 (7)0.0264 (6)0.0236 (6)0.0017 (5)0.0046 (5)0.0031 (4)
C30.0395 (6)0.0329 (7)0.0291 (6)−0.0004 (5)0.0048 (5)0.0012 (5)
C40.0366 (6)0.0328 (7)0.0372 (7)−0.0028 (5)0.0086 (5)−0.0003 (5)
C50.0383 (6)0.0359 (7)0.0412 (7)0.0022 (5)0.0044 (5)0.0051 (6)
O1W0.0443 (6)0.0467 (6)0.0496 (6)0.0051 (4)0.0102 (5)0.0143 (5)

Geometric parameters (Å, °)

O1—C11.2497 (18)N4—C51.3174 (18)
O2—C11.2530 (18)N4—C31.3527 (16)
O3—C21.4170 (15)N5—C31.3104 (18)
O3—H30.870 (11)N5—H5NA0.901 (13)
N1—C41.3215 (18)N5—H5NB0.895 (13)
N1—H1NA0.884 (13)N6—C41.3224 (18)
N1—H1NB0.879 (13)N6—C31.3583 (16)
N2—C41.3590 (18)C1—C21.5242 (18)
N2—C51.3610 (18)C2—C2i1.531 (2)
N2—H2NA0.889 (15)C2—H2A0.9600
N3—C51.3193 (18)O1W—H1WA0.858 (14)
N3—H3NA0.872 (14)O1W—H1WB0.804 (13)
N3—H3NB0.900 (14)
C2—O3—H3111.1 (11)O2—C1—C2116.11 (12)
C4—N1—H1NA117.6 (12)O3—C2—C1110.08 (10)
C4—N1—H1NB119.1 (12)O3—C2—C2i111.37 (8)
H1NA—N1—H1NB123.3 (16)C1—C2—C2i108.42 (12)
C4—N2—C5119.39 (13)O3—C2—H2A109.5
C4—N2—H2NA119.1 (11)C1—C2—H2A109.3
C5—N2—H2NA121.5 (11)C2i—C2—H2A108.2
C5—N3—H3NA119.1 (13)N5—C3—N4117.12 (12)
C5—N3—H3NB117.1 (12)N5—C3—N6117.29 (12)
H3NA—N3—H3NB123.8 (17)N4—C3—N6125.59 (13)
C5—N4—C3115.95 (12)N1—C4—N6120.66 (13)
C3—N5—H5NA118.9 (11)N1—C4—N2117.72 (13)
C3—N5—H5NB120.3 (11)N6—C4—N2121.62 (12)
H5NA—N5—H5NB120.5 (15)N4—C5—N3120.17 (13)
C4—N6—C3115.71 (11)N4—C5—N2121.69 (12)
O1—C1—O2125.57 (13)N3—C5—N2118.14 (14)
O1—C1—C2118.30 (13)H1WA—O1W—H1WB110.6 (16)
O1—C1—C2—O3−15.91 (17)C3—N6—C4—N1−179.76 (12)
O2—C1—C2—O3165.79 (11)C3—N6—C4—N20.99 (18)
O1—C1—C2—C2i106.14 (12)C5—N2—C4—N1179.33 (13)
O2—C1—C2—C2i−72.17 (12)C5—N2—C4—N6−1.4 (2)
C5—N4—C3—N5177.80 (13)C3—N4—C5—N3−178.79 (13)
C5—N4—C3—N6−2.34 (19)C3—N4—C5—N21.85 (19)
C4—N6—C3—N5−179.21 (12)C4—N2—C5—N4−0.1 (2)
C4—N6—C3—N40.93 (18)C4—N2—C5—N3−179.50 (13)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.87 (1)1.80 (1)2.6680 (14)173 (2)
N1—H1NA···O10.88 (1)2.27 (1)3.0466 (19)146 (2)
N1—H1NB···N4iii0.88 (1)2.15 (1)3.0287 (19)177 (2)
N2—H2NA···O30.89 (2)2.09 (2)2.8333 (16)140 (1)
N2—H2NA···O10.89 (2)2.19 (2)2.9497 (18)143 (1)
N3—H3NA···O1Wiv0.87 (1)2.26 (2)2.8609 (18)126 (2)
N3—H3NA···O30.87 (1)2.57 (2)3.2241 (18)132 (2)
N3—H3NB···N6v0.90 (1)2.13 (1)3.0313 (19)176 (2)
N5—H5NA···O1Wvi0.90 (1)1.94 (1)2.8148 (16)163 (2)
N5—H5NB···O2vii0.90 (1)2.15 (2)2.9581 (16)149 (2)
O1W—H1WA···O10.86 (1)1.85 (1)2.6861 (16)164 (2)
O1W—H1WB···O2viii0.80 (1)2.30 (2)2.9738 (17)142 (2)

Symmetry codes: (ii) x, −y, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1, y, −z+1/2; (v) x+1/2, −y+1/2, z+1/2; (vi) −x+1/2, −y+1/2, −z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2740).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Krische, M. J. & Lehn, J. M. (2000). Struct. Bond.96, 3–29.
  • Marchewka, M. K., Janczak, J., Debrus, S., Baran, J. & Ratajczak, H. (2003). Solid State Sci.5, 643–652.
  • Row, T. N. G. (1999). Coord. Chem. Rev.183, 81–100.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev.30, 83–91.
  • Thushari, S., Cha, J. A. K., Sung, H. H.-Y., Chui, S. S.-Y., Leung, A. L.-F., Yen, Y. F. & Williams, I. D. (2005). Chem. Commun. pp. 5515–5517. [PubMed]
  • Udaya Lakshmi, K., Thamotharan, S., Ramamurthi, K. & Varghese, B. (2006). Acta Cryst. E62, o455–o457.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography