PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m418.
Published online 2009 March 19. doi:  10.1107/S1600536809009234
PMCID: PMC2968908

{4-Bromo-2-[(2-morpholinoeth­yl)imino­meth­yl]phenolato}iodido(methanol)zinc(II)

Abstract

The title compound, [Zn(C13H16BrN2O2)I(CH3OH)], is a new mononuclear zinc(II) complex synthesized by the reaction of equimolar quanti­ties of 5-bromo­salicylaldehyde, 2-morpholinoethyl­amine and ZnI2 in methanol. The Zn atom is four-coordinate in a distorted tetra­hedral geometry, binding to a phenolate O and an imine N atom of the Schiff base ligand, the O atom of a methanol mol­ecule and one I anion. In the crystal structure, adjacent mol­ecules are linked through inter­molecular O—H(...)O hydrogen bonds, forming centrosymmetric dimers.

Related literature

For the structures of related zinc(II) complexes, see: Ali et al. (2008 [triangle]); You (2005 [triangle]); Zhu & Yang (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m418-scheme1.jpg

Experimental

Crystal data

  • [Zn(C13H16BrN2O2)I(CH4O)]
  • M r = 536.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m418-efi1.jpg
  • a = 7.747 (2) Å
  • b = 24.977 (3) Å
  • c = 9.598 (2) Å
  • β = 100.497 (4)°
  • V = 1826.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.24 mm−1
  • T = 298 K
  • 0.30 × 0.30 × 0.28 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.217, T max = 0.231
  • 12877 measured reflections
  • 3928 independent reflections
  • 2994 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.096
  • S = 1.03
  • 3928 reflections
  • 203 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.96 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009234/sj2595sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009234/sj2595Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges a research grant from Qiqihar University.

supplementary crystallographic information

Comment

Metal complexes of the Schiff base 4-bromo-2-[(2-morpholinoethylimino)methyl]phenol have not been reported previously. In this paper, the author reports the crystal structure of the title compound, a new mononuclear zinc(II) complex, (I), Fig. 1.

In (I), the Zn atom is four-coordinate in a tetrahedral geometry, with one O and one imine N atoms of a Schiff base ligand, one O atom of a methanol molecule, and one I atom. The tetrahedral geometry is severely distorted, as evidenced by the coordinate bond lengths and angles (Table 1). The bond lengths and angles in this complex are comparable with those in the similar zinc(II) complexes (Ali et al., 2008; You, 2005; Zhu & Yang, 2008). In the crystal structure, adjacent molecules are linked through intermolecular O–H···O hydrogen bonds (Table 2), forming centrosymmetric dimers (Fig. 2).

Experimental

Equimolar quantities (1.0 mmol each) of 5-bromosalicyaldehyde, 2-morpholinoethylamine, and ZnI2 were mixed in methanol. The mixture was stirred at reflux for 30 min and filtered. The filtrate was slowly evaporated for a few days, yielding yellow block-like crystals.

Refinement

H3A was located from a difference Fourier map and refined isotropically, with the O–H distance restrained to 0.85 (1) Å, and with Uiso(H) values fixed at 0.08 Å2. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
The structure of the complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of (I) showing the formation of centrosymmetric dimers. Hydrogen bonds are shown as dashed lines.

Crystal data

[Zn(C13H16BrN2O2)I(CH4O)]F(000) = 1040
Mr = 536.50Dx = 1.951 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3128 reflections
a = 7.747 (2) Åθ = 2.6–25.8°
b = 24.977 (3) ŵ = 5.24 mm1
c = 9.598 (2) ÅT = 298 K
β = 100.497 (4)°Block, yellow
V = 1826.1 (6) Å30.30 × 0.30 × 0.28 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3928 independent reflections
Radiation source: fine-focus sealed tube2994 reflections with I > 2σ(I)
graphiteRint = 0.038
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.217, Tmax = 0.231k = −30→31
12877 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0385P)2 + 2.0556P] where P = (Fo2 + 2Fc2)/3
3928 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.96 e Å3
1 restraintΔρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50584 (7)0.55343 (2)0.28004 (5)0.03432 (14)
I10.17781 (4)0.568293 (16)0.25354 (4)0.05466 (14)
Br11.05025 (10)0.31501 (2)0.17245 (8)0.0752 (2)
O10.5139 (4)0.47117 (12)0.3133 (3)0.0403 (8)
O20.6023 (12)0.73465 (19)0.4160 (5)0.119 (3)
O30.6375 (4)0.56560 (12)0.4796 (3)0.0370 (7)
N10.6591 (4)0.54528 (13)0.1329 (4)0.0276 (7)
N20.5630 (5)0.65133 (14)0.2055 (4)0.0381 (9)
C10.7471 (6)0.45205 (16)0.1873 (4)0.0298 (9)
C20.6310 (6)0.43807 (17)0.2793 (5)0.0340 (10)
C30.6426 (7)0.38546 (18)0.3320 (5)0.0464 (13)
H30.56490.37470.38990.056*
C40.7640 (8)0.34916 (19)0.3017 (5)0.0502 (13)
H40.76910.31480.33960.060*
C50.8782 (7)0.36454 (18)0.2139 (5)0.0409 (11)
C60.8706 (6)0.41432 (18)0.1569 (5)0.0364 (10)
H60.94770.42370.09720.044*
C70.7474 (6)0.50294 (17)0.1163 (4)0.0310 (9)
H70.82090.50540.05010.037*
C80.6873 (6)0.59135 (17)0.0431 (5)0.0366 (10)
H8A0.67220.5799−0.05490.044*
H8B0.80660.60440.07130.044*
C90.5603 (6)0.63595 (17)0.0561 (4)0.0346 (10)
H9A0.58970.66690.00410.042*
H9B0.44260.62470.01370.042*
C100.4279 (9)0.6926 (2)0.2083 (6)0.0645 (18)
H10A0.31260.67750.17410.077*
H10B0.44580.72190.14640.077*
C110.4376 (14)0.7133 (3)0.3593 (8)0.099 (3)
H11A0.34890.74070.35930.118*
H11B0.41180.68420.41920.118*
C120.7298 (13)0.6951 (3)0.4179 (7)0.100 (3)
H12A0.70500.66560.47690.119*
H12B0.84380.70970.45920.119*
C130.7348 (9)0.6746 (2)0.2692 (6)0.0619 (16)
H13A0.76290.70380.21060.074*
H13B0.82560.64760.27350.074*
C140.8215 (7)0.5553 (2)0.5089 (6)0.0561 (14)
H14A0.84230.51830.49080.084*
H14B0.86730.56330.60640.084*
H14C0.87880.57730.44920.084*
H3A0.592 (8)0.554 (2)0.547 (4)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0288 (3)0.0448 (3)0.0309 (3)0.0064 (2)0.0093 (2)−0.0008 (2)
I10.02973 (19)0.0787 (3)0.0568 (2)0.00815 (16)0.01119 (16)0.01217 (18)
Br10.0901 (5)0.0545 (4)0.0895 (5)0.0392 (3)0.0386 (4)0.0100 (3)
O10.046 (2)0.0353 (17)0.0463 (19)0.0053 (14)0.0257 (17)0.0043 (14)
O20.253 (9)0.041 (3)0.068 (3)−0.004 (4)0.044 (4)−0.013 (2)
O30.0370 (18)0.0466 (19)0.0286 (16)−0.0013 (14)0.0093 (14)0.0038 (14)
N10.0282 (19)0.0265 (18)0.0288 (18)0.0003 (14)0.0067 (15)0.0010 (14)
N20.053 (3)0.0282 (19)0.037 (2)0.0047 (17)0.0179 (19)0.0044 (15)
C10.032 (2)0.030 (2)0.027 (2)0.0010 (18)0.0060 (19)−0.0024 (17)
C20.038 (3)0.035 (2)0.030 (2)−0.0023 (19)0.008 (2)−0.0002 (18)
C30.066 (4)0.036 (3)0.044 (3)0.004 (2)0.027 (3)0.007 (2)
C40.075 (4)0.029 (2)0.048 (3)0.005 (2)0.014 (3)0.005 (2)
C50.046 (3)0.038 (3)0.040 (3)0.012 (2)0.010 (2)−0.005 (2)
C60.037 (3)0.037 (2)0.037 (2)0.004 (2)0.013 (2)−0.0018 (19)
C70.029 (2)0.038 (2)0.027 (2)−0.0031 (19)0.0084 (18)−0.0034 (18)
C80.042 (3)0.034 (2)0.036 (2)0.000 (2)0.015 (2)0.0049 (19)
C90.038 (3)0.033 (2)0.033 (2)0.0041 (19)0.009 (2)0.0095 (18)
C100.107 (5)0.039 (3)0.057 (3)0.030 (3)0.041 (4)0.017 (2)
C110.174 (10)0.065 (5)0.073 (5)0.055 (5)0.064 (6)0.022 (4)
C120.196 (10)0.046 (4)0.051 (4)−0.041 (5)0.007 (5)−0.009 (3)
C130.087 (5)0.046 (3)0.053 (3)−0.026 (3)0.013 (3)−0.005 (2)
C140.040 (3)0.075 (4)0.050 (3)−0.008 (3)0.001 (3)0.017 (3)

Geometric parameters (Å, °)

Zn1—N12.014 (3)C4—H40.9300
Zn1—O32.023 (3)C5—C61.355 (6)
Zn1—O12.078 (3)C6—H60.9300
Zn1—I12.5346 (9)C7—H70.9300
Br1—C51.913 (4)C8—C91.507 (6)
O1—C21.311 (5)C8—H8A0.9700
O2—C121.394 (10)C8—H8B0.9700
O2—C111.398 (11)C9—H9A0.9700
O3—C141.425 (6)C9—H9B0.9700
O3—H3A0.84 (5)C10—C111.528 (9)
N1—C71.285 (5)C10—H10A0.9700
N1—C81.478 (5)C10—H10B0.9700
N2—C101.472 (6)C11—H11A0.9700
N2—C131.478 (7)C11—H11B0.9700
N2—C91.481 (5)C12—C131.525 (8)
C1—C61.411 (6)C12—H12A0.9700
C1—C21.414 (6)C12—H12B0.9700
C1—C71.442 (6)C13—H13A0.9700
C2—C31.405 (6)C13—H13B0.9700
C3—C41.375 (7)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.383 (7)C14—H14C0.9600
N1—Zn1—O3114.78 (13)C9—C8—H8A109.4
N1—Zn1—O190.15 (12)N1—C8—H8B109.4
O3—Zn1—O190.42 (13)C9—C8—H8B109.4
N1—Zn1—I1130.76 (10)H8A—C8—H8B108.0
O3—Zn1—I1113.36 (9)N2—C9—C8112.2 (4)
O1—Zn1—I199.31 (9)N2—C9—H9A109.2
C2—O1—Zn1126.0 (3)C8—C9—H9A109.2
C12—O2—C11109.3 (5)N2—C9—H9B109.2
C14—O3—Zn1118.2 (3)C8—C9—H9B109.2
C14—O3—H3A109 (4)H9A—C9—H9B107.9
Zn1—O3—H3A118 (4)N2—C10—C11110.1 (5)
C7—N1—C8115.5 (3)N2—C10—H10A109.6
C7—N1—Zn1124.4 (3)C11—C10—H10A109.6
C8—N1—Zn1119.9 (3)N2—C10—H10B109.6
C10—N2—C13107.9 (4)C11—C10—H10B109.6
C10—N2—C9108.4 (4)H10A—C10—H10B108.2
C13—N2—C9110.8 (4)O2—C11—C10112.5 (6)
C6—C1—C2119.8 (4)O2—C11—H11A109.1
C6—C1—C7115.6 (4)C10—C11—H11A109.1
C2—C1—C7124.6 (4)O2—C11—H11B109.1
O1—C2—C3120.1 (4)C10—C11—H11B109.1
O1—C2—C1123.2 (4)H11A—C11—H11B107.8
C3—C2—C1116.7 (4)O2—C12—C13111.4 (6)
C4—C3—C2122.8 (4)O2—C12—H12A109.4
C4—C3—H3118.6C13—C12—H12A109.4
C2—C3—H3118.6O2—C12—H12B109.4
C3—C4—C5118.9 (4)C13—C12—H12B109.4
C3—C4—H4120.5H12A—C12—H12B108.0
C5—C4—H4120.5N2—C13—C12110.2 (6)
C6—C5—C4121.0 (4)N2—C13—H13A109.6
C6—C5—Br1119.3 (4)C12—C13—H13A109.6
C4—C5—Br1119.6 (4)N2—C13—H13B109.6
C5—C6—C1120.7 (4)C12—C13—H13B109.6
C5—C6—H6119.7H13A—C13—H13B108.1
C1—C6—H6119.7O3—C14—H14A109.5
N1—C7—C1128.3 (4)O3—C14—H14B109.5
N1—C7—H7115.8H14A—C14—H14B109.5
C1—C7—H7115.8O3—C14—H14C109.5
N1—C8—C9111.1 (3)H14A—C14—H14C109.5
N1—C8—H8A109.4H14B—C14—H14C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.84 (5)1.81 (5)2.649 (4)178 (7)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2595).

References

  • Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719. [PMC free article] [PubMed]
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • You, Z.-L. (2005). Acta Cryst. E61, m1571–m1573.
  • Zhu, X.-W. & Yang, X.-Z. (2008). Acta Cryst. E64, m1090–m1091. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography