PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o736.
Published online 2009 March 11. doi:  10.1107/S1600536809008083
PMCID: PMC2968904

6,8-Dihydr­oxy-3-methyl­isocoumarin

Abstract

The title compound, C10H8O4, was isolated from the fermentation culture of the endophytic fungus Cephalo­sporium sp. In the crystal structure, mol­ecules are connected into a one-dimensional chain along [101] by inter­molecular O—H(...)O hydrogen bonds involving the hydroxyl and carbonyl functionalities. The chains are linked by non-classical C—H(...)O inter­actions, forming extended two-dimensional layers approximately parallel to (11An external file that holds a picture, illustration, etc.
Object name is e-65-0o736-efi1.jpg).

Related literature

For new bioactive secondary metabolites from marine fungi, see: Shao et al. (2007 [triangle]). For the investigation of an endophytic strain Cephalosporium sp., see: Wei et al. (2008 [triangle]); Hemingway et al. (1977 [triangle]); Kendall et al. (1989 [triangle]). For crystal structures with non-classical C—H(...)O inter­actions, see: Nangia (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o736-scheme1.jpg

Experimental

Crystal data

  • C10H8O4
  • M r = 192.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o736-efi2.jpg
  • a = 3.8201 (7) Å
  • b = 15.710 (3) Å
  • c = 14.196 (2) Å
  • β = 92.668 (2)°
  • V = 851.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 291 K
  • 0.27 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.969, T max = 0.978
  • 4781 measured reflections
  • 1586 independent reflections
  • 1272 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.094
  • S = 1.04
  • 1586 reflections
  • 131 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008083/bh2219sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008083/bh2219Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 40776073), the Basic Research Program of Science and Technology, Ministry of Science and Technology of China (No. 2007FY210500) and the Youthful Fund of Guangdong Medical College (No. XQ0511).

supplementary crystallographic information

Comment

Endophytic fungi have proven to be a rich source of novel structural compounds with interesting biological activities and a high level of biodiversity. In the course of our search for new or bioactive secondary metabolites from the marine fungi (Shao et al., 2007). we have investigated an endophytic strain Cephalosporium sp. (Wei et al., 2008). The title compound was previously isolated from the organic extracts of the fungus Ceratocystis minor (Hemingway et al., 1977), and elucidated on the basic of spectroscopic analysis (Kendall et al., 1989). Herein, the title compound was isolated from the fermentation culture of the endophytic fungus Cephalosporium sp., and its crystal structure is reported.

The asymmetric unit of the title compound contains one independent molecule (Fig. 1), in which the bond lengths and angles are within the expected ranges. The structural analysis reveals that the most relevant feature is the arrangement of the molecules, which are connected to form a one-dimensional chain along the [101] direction, by the formation of intermolecular O—H···O hydrogen bonds. Furthermore, weak non-conventional intermolecular C—H···O interactions are observed (Nangia, 2002), in which C5—H5 is a donor and O4 is an acceptor. These interactions consolidate the crystal packing. Details of hydrogen bonds are given in Table 1.

Experimental

A strain of fungus Cephalosporium sp. (No. 2090) was deposited in the School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China. Culture conditions: GYT medium (glucose 10 g/L, peptone 2 g/L, yeast extract 1 g/L, NaCl 2.5 g/L) and incubation at 298 K for 4 weeks. The cultures (70 L) were filtered through cheesecloth. The filtrate was concentrated to 3 L below 323 K, extracted five times by shaking with an equal volume of ethyl acetate. The extract was evaporated under reduced pressure below 323 K. The combined organic extracts were chromatographed on silica-gel, eluting with petroleum ether/ethyl acetate, to yield the title compound. Crystals were obtained by evaporation of an ethyl acetate solution.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 (aromatic CH), 0.96 (methyl CH3), and 0.82 Å (hydroxyl OH), and with Uiso(H) = 1.5Ueq(carrier atom) or for CH3 and OH groups and Uiso(H) = 1.2Ueq(carrier C) otherwise.

Figures

Fig. 1.
View of the title molecule with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
Fig. 2.
View of the 2D layers formed by intermolecular O—H···O hydrogen bonds and weak non-conventional intermolecular C—H···O interactions.

Crystal data

C10H8O4F(000) = 400
Mr = 192.16Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1738 reflections
a = 3.8201 (7) Åθ = 2.6–25.5°
b = 15.710 (3) ŵ = 0.12 mm1
c = 14.196 (2) ÅT = 291 K
β = 92.668 (2)°Block, yellow
V = 851.1 (3) Å30.27 × 0.20 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer1586 independent reflections
Radiation source: fine-focus sealed tube1272 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −4→4
Tmin = 0.969, Tmax = 0.978k = −19→13
4781 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.094w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1957P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1586 reflectionsΔρmax = 0.18 e Å3
131 parametersΔρmin = −0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.015 (3)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3482 (3)0.32453 (7)0.81217 (7)0.0451 (3)
O20.3544 (3)0.19366 (7)0.75748 (8)0.0572 (4)
O30.0718 (3)0.15766 (7)0.58873 (8)0.0552 (4)
H30.17090.14760.64000.083*
O4−0.4021 (3)0.39231 (7)0.41364 (7)0.0487 (3)
H4−0.45140.35410.37590.073*
C10.3853 (4)0.45742 (12)0.89102 (11)0.0516 (4)
H1A0.31480.51600.88590.077*
H1B0.63590.45420.89870.077*
H1C0.28190.43210.94460.077*
C20.2659 (4)0.41080 (10)0.80372 (10)0.0395 (4)
C30.1028 (4)0.44079 (10)0.72629 (10)0.0379 (4)
H3A0.05050.49850.72240.046*
C40.0042 (3)0.38590 (9)0.64774 (9)0.0318 (3)
C5−0.1641 (4)0.41528 (9)0.56587 (10)0.0355 (3)
H5−0.22300.47250.55980.043*
C6−0.2453 (4)0.35866 (10)0.49244 (10)0.0354 (3)
C7−0.1659 (4)0.27235 (9)0.50066 (10)0.0378 (4)
H7−0.22350.23540.45120.045*
C8−0.0016 (4)0.24192 (9)0.58233 (10)0.0368 (3)
C90.0880 (4)0.29837 (9)0.65755 (9)0.0337 (3)
C100.2651 (4)0.26818 (10)0.74166 (10)0.0401 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0531 (7)0.0503 (7)0.0308 (5)0.0018 (5)−0.0102 (5)−0.0008 (5)
O20.0802 (9)0.0448 (7)0.0447 (7)0.0086 (6)−0.0182 (6)0.0060 (5)
O30.0804 (9)0.0330 (6)0.0503 (7)0.0065 (5)−0.0162 (6)−0.0011 (5)
O40.0677 (8)0.0425 (6)0.0342 (6)0.0033 (5)−0.0174 (5)−0.0004 (5)
C10.0488 (10)0.0661 (11)0.0390 (9)−0.0024 (8)−0.0060 (7)−0.0131 (8)
C20.0382 (8)0.0459 (9)0.0344 (8)−0.0026 (7)0.0008 (6)−0.0058 (6)
C30.0414 (8)0.0372 (8)0.0350 (8)−0.0021 (6)0.0002 (6)−0.0034 (6)
C40.0311 (7)0.0354 (8)0.0291 (7)−0.0033 (6)0.0016 (6)−0.0006 (6)
C50.0405 (8)0.0314 (8)0.0344 (7)0.0001 (6)−0.0011 (6)0.0009 (6)
C60.0354 (8)0.0407 (8)0.0297 (7)−0.0013 (6)−0.0037 (6)0.0029 (6)
C70.0437 (8)0.0379 (9)0.0312 (7)−0.0045 (6)−0.0047 (6)−0.0053 (6)
C80.0412 (8)0.0318 (8)0.0370 (8)−0.0010 (6)−0.0011 (6)−0.0003 (6)
C90.0344 (8)0.0364 (8)0.0301 (7)−0.0011 (6)−0.0005 (6)0.0019 (6)
C100.0436 (9)0.0422 (9)0.0339 (8)0.0007 (7)−0.0030 (6)0.0033 (6)

Geometric parameters (Å, °)

O1—C101.3626 (18)C3—C41.4457 (19)
O1—C21.3951 (19)C3—H3A0.9300
O2—C101.2370 (18)C4—C51.3813 (19)
O3—C81.3553 (18)C4—C91.417 (2)
O3—H30.8200C5—C61.394 (2)
O4—C61.3518 (17)C5—H50.9300
O4—H40.8200C6—C71.393 (2)
C1—C21.493 (2)C7—C81.378 (2)
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600C8—C91.418 (2)
C1—H1C0.9600C9—C101.426 (2)
C2—C31.325 (2)
C10—O1—C2121.61 (11)C4—C5—C6119.64 (13)
C8—O3—H3109.5C4—C5—H5120.2
C6—O4—H4109.5C6—C5—H5120.2
C2—C1—H1A109.5O4—C6—C7122.43 (13)
C2—C1—H1B109.5O4—C6—C5116.35 (13)
H1A—C1—H1B109.5C7—C6—C5121.22 (13)
C2—C1—H1C109.5C8—C7—C6119.81 (13)
H1A—C1—H1C109.5C8—C7—H7120.1
H1B—C1—H1C109.5C6—C7—H7120.1
C3—C2—O1120.81 (13)O3—C8—C7118.69 (13)
C3—C2—C1128.92 (15)O3—C8—C9121.23 (13)
O1—C2—C1110.27 (13)C7—C8—C9120.08 (13)
C2—C3—C4121.57 (14)C4—C9—C8119.18 (12)
C2—C3—H3A119.2C4—C9—C10120.08 (13)
C4—C3—H3A119.2C8—C9—C10120.74 (13)
C5—C4—C9120.07 (12)O2—C10—O1115.39 (13)
C5—C4—C3122.96 (13)O2—C10—C9125.66 (14)
C9—C4—C3116.96 (12)O1—C10—C9118.96 (13)
C10—O1—C2—C30.1 (2)C5—C4—C9—C80.3 (2)
C10—O1—C2—C1179.78 (13)C3—C4—C9—C8−179.69 (13)
O1—C2—C3—C4−0.1 (2)C5—C4—C9—C10179.32 (13)
C1—C2—C3—C4−179.74 (14)C3—C4—C9—C10−0.66 (19)
C2—C3—C4—C5−179.60 (14)O3—C8—C9—C4−179.69 (13)
C2—C3—C4—C90.4 (2)C7—C8—C9—C40.5 (2)
C9—C4—C5—C6−1.1 (2)O3—C8—C9—C101.3 (2)
C3—C4—C5—C6178.85 (13)C7—C8—C9—C10−178.57 (13)
C4—C5—C6—O4−178.42 (12)C2—O1—C10—O2179.49 (13)
C4—C5—C6—C71.3 (2)C2—O1—C10—C9−0.4 (2)
O4—C6—C7—C8179.14 (14)C4—C9—C10—O2−179.17 (15)
C5—C6—C7—C8−0.5 (2)C8—C9—C10—O2−0.2 (2)
C6—C7—C8—O3179.79 (14)C4—C9—C10—O10.7 (2)
C6—C7—C8—C9−0.3 (2)C8—C9—C10—O1179.67 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.922.6426 (16)146
O4—H4···O2i0.821.962.7225 (15)155
C5—H5···O4ii0.932.603.4659 (19)155

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) −x−1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2219).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hemingway, R. W., McGraw, G. W. & Barras, S. J. (1977). J. Agric. Food Chem.25, 717–722.
  • Kendall, J. K., Fisher, T. H., Schultz, H. P. & Schultz, T. P. (1989). J. Org. Chem.54, 4218–4220.
  • Nangia, A. (2002). CrystEngComm, 4, 93–101.
  • Shao, C. L., She, Z. G., Guo, Z. Y., Peng, H., Cai, X. L., Zhou, S. N., Gu, Y. C. & Lin, Y. C. (2007). Magn. Reson. Chem.45, 434–438. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wei, M. Y., Li, S. D., Chen, X. T., Shao, C. L., She, Z. G. & Lin, Y. C. (2008). Chem. Res. Appl.20, 790–792.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography