PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o789–o790.
Published online 2009 March 19. doi:  10.1107/S1600536809007570
PMCID: PMC2968902

9-[(2,6-Dimethoxy­phen­oxy)carbon­yl]-10-methyl­acridinium trifluoro­methane­sulfonate

Abstract

In the crystal structure of the title compound, C23H20NO4 +·CF3SO3 , the cations are linked through C—H(...)O, C—H(...)π and π–π inter­actions [centroid-centroid distances = 3.641 (2) and 3.885 (2) Å]. The cation and the anion are held together by C—H(...)O and S—O(...)π inter­actions. The acridine ring system and the benzene ring in the cation are oriented at a dihedral angle of 8.7 (1)°. The carb­oxy group is twisted at an angle of 83.2 (1)° relative to the acridine skeleton.

Related literature

For general background, see: Adamczyk et al. (2004 [triangle]); Becker et al. (1999 [triangle]); Rak et al. (1999 [triangle]); Zomer & Jacquemijns (2001 [triangle]). For related structures, see: Sikorski et al. (2008 [triangle]). For mol­ecular inter­actions, see: Bianchi et al. (2004 [triangle]); Dorn et al. (2005 [triangle]); Hunter et al. (2001 [triangle]); Steiner (1999 [triangle]); Takahashi et al. (2001 [triangle]). For the synthesis, see: Sato (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o789-scheme1.jpg

Experimental

Crystal data

  • C23H20NO4 +·CF3SO3
  • M r = 523.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o789-efi7.jpg
  • a = 11.6803 (4) Å
  • b = 14.7434 (5) Å
  • c = 13.6286 (5) Å
  • β = 93.462 (4)°
  • V = 2342.66 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 295 K
  • 0.55 × 0.30 × 0.02 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.911, T max = 0.995
  • 20680 measured reflections
  • 4160 independent reflections
  • 2274 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.109
  • S = 0.87
  • 4160 reflections
  • 328 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
S—O(...)π Interactions (Å,°)
Table 3
π–π Interactions (Å,°)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007570/is2390sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007570/is2390Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

supplementary crystallographic information

Comment

Phenyl 10-alkylacridinium-9-carboxylates have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Becker et al., 1999; Adamczyk et al., 2004). The reaction of the cations of these salts with hydrogen peroxide in alkaline media produces light. Our own investigations (Rak et al., 1999) and those of others (Zomer & Jacquemijns, 2001) have revealed that oxidation of acridinium chemiluminogens is accompanied by the removal of the phenoxycarbonyl fragment and the convertion of the rest of molecules to electronically excited, light-emitting 10-alkyl-9-acridinones. It has been found that the efficiency of chemiluminescence is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). Continuing our investigations onto the above mentioned effect, we synthesized the compound containing two methoxy groups in the phenyl fragment. Here, we present its structure. Methoxy groups, which possess electron-attractive features, may influence the stability and chemiluminogenic ability of the compound investigated.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2008). With respective average deviations from planarity of 0.037 (3) Å and 0.010 (3) Å, the acridine and benzene ring systems in the cation are oriented at 8.7 (1)°. The carboxy group is twisted at an angle of 83.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are either parallel or inclined at an angle of 10.9 (1)° in the lattice.

In the crystal structure, the cations are linked through C—H···O (Table 1, Fig. 2), C—H···π (Table 1, Fig. 2) and π–π (Table 3, Fig. 2) interactions, and the cations and anions by C—H···O (Table 1, Fig. 2) and S—O···π (Table 2, Fig. 2) interactions. The C—H···O (Steiner, 1999; Bianchi et al., 2004) interactions are of the hydrogen-bond type. The C—H···π (Takahashi et al., 2001) and S—O···π (Dorn et al., 2005) interactions should be of an attractive nature, like the π–π contacts (Hunter et al., 2001). The crystal structure is stabilized by a network of the aforementioned short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

2,6-Dimethoxyphenylacridine-9-carboxylate was prepared by heating anhydrous acridine-9-carboxylic acid with thionyl chloride, followed by esterification of the resulting acid chloride with an equimolar quantity of 2,6-dimethoxyphenol (Sato, 1996). The reaction was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine (1.5 molar excess) and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 - 25 h). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The 2,6-dimethoxyphenylacridine-9-carboxylate thus obtained was subsequently dissolved in anhydrous dichloromethane and treated with a fivefold molar excess of methyl triluoromethanesulfonate dissolved in the same solvent (under an Ar atmosphere at room temperature for 4 h). The crude salt was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether (yield 42%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 243–245 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parrent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg4 denote the ring centroids.
Fig. 2.
The arrangement of the ions in the crystal structure, the C—H···O interactions are represented by dashed lines, the C—H···π, S—O···π and π–π ...

Crystal data

C23H20NO4+·CF3SO3F(000) = 1080
Mr = 523.48Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 6747 reflections
a = 11.6803 (4) Åθ = 3.1–29.2°
b = 14.7434 (5) ŵ = 0.21 mm1
c = 13.6286 (5) ÅT = 295 K
β = 93.462 (4)°Plate, yellow
V = 2342.66 (14) Å30.55 × 0.30 × 0.02 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer4160 independent reflections
Radiation source: Enhanced (Mo) X-ray Source2274 reflections with I > 2σ(I)
graphiteRint = 0.045
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.1°
ω scansh = −13→13
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)k = −17→17
Tmin = 0.911, Tmax = 0.995l = −15→16
20680 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.87w = 1/[σ2(Fo2) + (0.0672P)2] where P = (Fo2 + 2Fc2)/3
4160 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7814 (2)0.40388 (17)0.39746 (18)0.0638 (6)
H10.82560.37370.44620.077*
C20.7685 (2)0.49461 (18)0.4029 (2)0.0758 (8)
H20.80310.52650.45560.091*
C30.7034 (2)0.54073 (18)0.3296 (2)0.0732 (8)
H30.69530.60330.33410.088*
C40.6517 (2)0.49643 (17)0.2521 (2)0.0651 (7)
H40.60960.52890.20380.078*
C50.5619 (2)0.2128 (2)0.08150 (18)0.0665 (7)
H50.52160.24370.03100.080*
C60.5684 (2)0.1217 (2)0.0792 (2)0.0759 (8)
H60.53220.09080.02650.091*
C70.6277 (2)0.07213 (19)0.1532 (2)0.0748 (7)
H70.62840.00910.15050.090*
C80.6843 (2)0.11584 (17)0.22920 (18)0.0622 (6)
H80.72550.08280.27760.075*
C90.73852 (17)0.26032 (15)0.31071 (15)0.0471 (6)
N100.61009 (14)0.35392 (13)0.16713 (13)0.0508 (5)
C110.72823 (17)0.35398 (15)0.31827 (15)0.0497 (6)
C120.66127 (18)0.40128 (15)0.24392 (16)0.0503 (6)
C130.68078 (18)0.21248 (15)0.23483 (16)0.0495 (6)
C140.61625 (18)0.26140 (16)0.16052 (16)0.0514 (6)
C150.8199 (2)0.21059 (14)0.38169 (16)0.0523 (6)
O160.77183 (12)0.18961 (10)0.46502 (11)0.0556 (4)
O170.91548 (15)0.19252 (14)0.36460 (13)0.0862 (6)
C180.84322 (18)0.14411 (16)0.53585 (15)0.0512 (6)
C190.84232 (19)0.05032 (16)0.53766 (17)0.0548 (6)
C200.9070 (2)0.00594 (18)0.61157 (19)0.0657 (7)
H200.9073−0.05700.61510.079*
C210.9708 (2)0.0567 (2)0.67943 (19)0.0742 (8)
H211.01340.02700.72960.089*
C220.9739 (2)0.1498 (2)0.67584 (17)0.0700 (7)
H221.01850.18230.72240.084*
C230.9101 (2)0.19452 (17)0.60234 (16)0.0569 (6)
O240.77711 (14)0.01014 (11)0.46366 (12)0.0674 (5)
C250.7774 (2)−0.08702 (17)0.4597 (2)0.0771 (8)
H25A0.7387−0.10680.39930.116*
H25B0.7386−0.11080.51430.116*
H25C0.8551−0.10860.46290.116*
O260.90647 (16)0.28607 (12)0.58923 (12)0.0754 (5)
C270.9977 (3)0.3383 (2)0.6341 (2)0.0978 (10)
H27A0.99180.39980.61110.147*
H27B1.06980.31320.61720.147*
H27C0.99320.33720.70420.147*
C280.5417 (2)0.40504 (19)0.09069 (19)0.0798 (8)
H28A0.59040.44720.05930.120*
H28B0.48160.43760.12050.120*
H28C0.50860.36350.04260.120*
S290.62429 (6)0.72700 (4)0.67537 (5)0.0605 (2)
O300.6575 (2)0.73286 (15)0.77722 (13)0.1141 (8)
O310.59056 (15)0.81084 (11)0.62945 (13)0.0719 (5)
O320.55268 (15)0.65261 (13)0.64848 (15)0.0913 (6)
C330.7559 (2)0.70003 (18)0.6202 (2)0.0687 (7)
F340.79921 (14)0.62064 (11)0.65070 (14)0.1050 (6)
F350.83549 (13)0.76166 (12)0.64108 (16)0.1158 (6)
F360.74067 (16)0.69624 (13)0.52297 (12)0.1107 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0710 (16)0.0497 (17)0.0707 (15)−0.0017 (13)0.0038 (13)0.0012 (13)
C20.095 (2)0.0490 (18)0.0841 (19)−0.0063 (15)0.0125 (16)−0.0089 (14)
C30.0845 (19)0.0378 (15)0.099 (2)0.0033 (14)0.0219 (17)0.0021 (16)
C40.0616 (16)0.0456 (17)0.0894 (19)0.0057 (12)0.0156 (14)0.0186 (14)
C50.0560 (15)0.071 (2)0.0721 (17)−0.0045 (14)−0.0009 (12)0.0024 (15)
C60.0752 (18)0.065 (2)0.0870 (19)−0.0106 (15)−0.0002 (15)−0.0110 (16)
C70.0789 (18)0.0448 (16)0.101 (2)−0.0049 (14)0.0100 (16)−0.0090 (16)
C80.0645 (15)0.0417 (16)0.0806 (17)0.0021 (12)0.0055 (13)0.0037 (13)
C90.0448 (12)0.0396 (14)0.0578 (13)0.0018 (10)0.0112 (11)0.0103 (11)
N100.0406 (10)0.0473 (13)0.0649 (12)0.0041 (9)0.0070 (9)0.0127 (10)
C110.0483 (13)0.0400 (14)0.0616 (14)−0.0005 (11)0.0109 (11)0.0071 (12)
C120.0464 (13)0.0385 (15)0.0675 (15)0.0019 (11)0.0170 (12)0.0087 (12)
C130.0456 (12)0.0412 (15)0.0628 (14)−0.0006 (11)0.0114 (11)0.0057 (11)
C140.0410 (12)0.0483 (15)0.0658 (15)0.0006 (11)0.0104 (11)0.0082 (12)
C150.0512 (15)0.0434 (15)0.0634 (15)0.0005 (11)0.0114 (12)0.0072 (11)
O160.0543 (9)0.0517 (10)0.0617 (9)0.0094 (7)0.0104 (8)0.0111 (8)
O170.0573 (11)0.1193 (17)0.0841 (12)0.0260 (10)0.0210 (9)0.0410 (11)
C180.0500 (13)0.0538 (16)0.0505 (13)0.0100 (12)0.0085 (11)0.0076 (12)
C190.0551 (14)0.0506 (16)0.0596 (15)0.0053 (12)0.0115 (12)0.0081 (13)
C200.0700 (16)0.0562 (17)0.0721 (17)0.0092 (14)0.0144 (14)0.0178 (14)
C210.0784 (19)0.081 (2)0.0628 (16)0.0142 (16)0.0023 (14)0.0194 (16)
C220.0726 (17)0.081 (2)0.0564 (15)0.0022 (15)0.0027 (13)−0.0005 (14)
C230.0622 (15)0.0554 (17)0.0542 (14)0.0075 (13)0.0131 (13)0.0059 (13)
O240.0732 (11)0.0490 (11)0.0794 (11)−0.0003 (9)−0.0007 (9)0.0070 (9)
C250.0817 (19)0.0502 (18)0.1008 (19)−0.0032 (14)0.0178 (15)−0.0019 (15)
O260.0934 (13)0.0544 (12)0.0776 (11)−0.0019 (10)−0.0010 (10)−0.0035 (9)
C270.126 (3)0.083 (2)0.0849 (19)−0.028 (2)0.0082 (18)−0.0061 (17)
C280.0725 (18)0.074 (2)0.0911 (18)0.0139 (15)−0.0125 (14)0.0230 (16)
S290.0693 (4)0.0491 (4)0.0639 (4)−0.0018 (3)0.0105 (3)0.0018 (3)
O300.183 (2)0.1048 (17)0.0545 (11)0.0155 (16)0.0050 (12)0.0030 (11)
O310.0811 (12)0.0492 (11)0.0853 (11)0.0124 (9)0.0036 (9)0.0049 (9)
O320.0713 (12)0.0602 (13)0.1427 (16)−0.0205 (10)0.0087 (11)0.0027 (12)
C330.0625 (17)0.0533 (17)0.089 (2)−0.0042 (14)−0.0076 (14)0.0083 (14)
F340.0808 (11)0.0678 (11)0.1654 (16)0.0192 (9)−0.0016 (10)0.0175 (11)
F350.0617 (10)0.0977 (13)0.1853 (18)−0.0272 (10)−0.0152 (10)0.0345 (12)
F360.1302 (15)0.1217 (16)0.0842 (12)0.0248 (11)0.0384 (11)−0.0103 (10)

Geometric parameters (Å, °)

C1—C21.349 (3)C18—C231.377 (3)
C1—C111.418 (3)C18—C191.383 (3)
C1—H10.9300C19—O241.362 (3)
C2—C31.396 (4)C19—C201.387 (3)
C2—H20.9300C20—C211.374 (3)
C3—C41.353 (3)C20—H200.9300
C3—H30.9300C21—C221.374 (4)
C4—C121.412 (3)C21—H210.9300
C4—H40.9300C22—C231.380 (3)
C5—C61.345 (4)C22—H220.9300
C5—C141.412 (3)C23—O261.362 (3)
C5—H50.9300O24—C251.433 (3)
C6—C71.396 (4)C25—H25A0.9600
C6—H60.9300C25—H25B0.9600
C7—C81.357 (3)C25—H25C0.9600
C7—H70.9300O26—C271.423 (3)
C8—C131.428 (3)C27—H27A0.9600
C8—H80.9300C27—H27B0.9600
C9—C111.390 (3)C27—H27C0.9600
C9—C131.392 (3)C28—H28A0.9600
C9—C151.506 (3)C28—H28B0.9600
N10—C121.366 (3)C28—H28C0.9600
N10—C141.369 (3)S29—O321.4142 (19)
N10—C281.480 (3)S29—O301.421 (2)
C11—C121.424 (3)S29—O311.4300 (17)
C13—C141.422 (3)S29—C331.796 (3)
C15—O171.184 (2)C33—F351.319 (3)
C15—O161.334 (2)C33—F361.327 (3)
O16—C181.407 (2)C33—F341.332 (3)
C2—C1—C11120.8 (2)C19—C18—O16118.9 (2)
C2—C1—H1119.6O24—C19—C18115.2 (2)
C11—C1—H1119.6O24—C19—C20126.1 (2)
C1—C2—C3120.1 (3)C18—C19—C20118.7 (2)
C1—C2—H2120.0C21—C20—C19118.8 (2)
C3—C2—H2120.0C21—C20—H20120.6
C4—C3—C2121.5 (2)C19—C20—H20120.6
C4—C3—H3119.3C20—C21—C22122.3 (2)
C2—C3—H3119.3C20—C21—H21118.8
C3—C4—C12120.5 (2)C22—C21—H21118.8
C3—C4—H4119.7C21—C22—C23119.3 (3)
C12—C4—H4119.7C21—C22—H22120.4
C6—C5—C14120.1 (2)C23—C22—H22120.4
C6—C5—H5119.9O26—C23—C18115.9 (2)
C14—C5—H5119.9O26—C23—C22125.5 (2)
C5—C6—C7122.1 (3)C18—C23—C22118.7 (2)
C5—C6—H6118.9C19—O24—C25117.39 (19)
C7—C6—H6118.9O24—C25—H25A109.5
C8—C7—C6120.0 (2)O24—C25—H25B109.5
C8—C7—H7120.0H25A—C25—H25B109.5
C6—C7—H7120.0O24—C25—H25C109.5
C7—C8—C13120.0 (2)H25A—C25—H25C109.5
C7—C8—H8120.0H25B—C25—H25C109.5
C13—C8—H8120.0C23—O26—C27117.6 (2)
C11—C9—C13121.2 (2)O26—C27—H27A109.5
C11—C9—C15119.3 (2)O26—C27—H27B109.5
C13—C9—C15119.3 (2)H27A—C27—H27B109.5
C12—N10—C14122.52 (18)O26—C27—H27C109.5
C12—N10—C28118.1 (2)H27A—C27—H27C109.5
C14—N10—C28119.28 (19)H27B—C27—H27C109.5
C9—C11—C1122.4 (2)N10—C28—H28A109.5
C9—C11—C12118.7 (2)N10—C28—H28B109.5
C1—C11—C12118.9 (2)H28A—C28—H28B109.5
N10—C12—C4122.4 (2)N10—C28—H28C109.5
N10—C12—C11119.4 (2)H28A—C28—H28C109.5
C4—C12—C11118.2 (2)H28B—C28—H28C109.5
C9—C13—C14119.0 (2)O32—S29—O30115.00 (13)
C9—C13—C8122.1 (2)O32—S29—O31114.45 (12)
C14—C13—C8118.9 (2)O30—S29—O31115.25 (12)
N10—C14—C5122.2 (2)O32—S29—C33103.15 (12)
N10—C14—C13119.1 (2)O30—S29—C33103.43 (14)
C5—C14—C13118.7 (2)O31—S29—C33103.20 (11)
O17—C15—O16124.5 (2)F35—C33—F36107.1 (2)
O17—C15—C9123.3 (2)F35—C33—F34106.8 (2)
O16—C15—C9112.20 (19)F36—C33—F34107.5 (2)
C15—O16—C18115.60 (16)F35—C33—S29111.5 (2)
C23—C18—C19122.2 (2)F36—C33—S29111.15 (18)
C23—C18—O16118.9 (2)F34—C33—S29112.49 (19)
C11—C1—C2—C3−0.7 (4)C8—C13—C14—C5−2.7 (3)
C1—C2—C3—C40.2 (4)C11—C9—C15—O17−94.4 (3)
C2—C3—C4—C120.8 (4)C13—C9—C15—O1781.4 (3)
C14—C5—C6—C70.1 (4)C11—C9—C15—O1685.7 (2)
C5—C6—C7—C8−2.1 (4)C13—C9—C15—O16−98.5 (2)
C6—C7—C8—C131.7 (4)O17—C15—O16—C181.0 (3)
C13—C9—C11—C1176.74 (19)C9—C15—O16—C18−179.09 (18)
C15—C9—C11—C1−7.6 (3)C15—O16—C18—C2388.2 (2)
C13—C9—C11—C12−2.9 (3)C15—O16—C18—C19−93.1 (2)
C15—C9—C11—C12172.79 (19)C23—C18—C19—O24−176.27 (18)
C2—C1—C11—C9−179.3 (2)O16—C18—C19—O245.0 (3)
C2—C1—C11—C120.3 (3)C23—C18—C19—C202.9 (3)
C14—N10—C12—C4−177.94 (19)O16—C18—C19—C20−175.80 (18)
C28—N10—C12—C4−0.5 (3)O24—C19—C20—C21178.2 (2)
C14—N10—C12—C112.9 (3)C18—C19—C20—C21−0.9 (3)
C28—N10—C12—C11−179.61 (19)C19—C20—C21—C22−0.9 (4)
C3—C4—C12—N10179.7 (2)C20—C21—C22—C230.7 (4)
C3—C4—C12—C11−1.1 (3)C19—C18—C23—O26177.12 (18)
C9—C11—C12—N10−0.6 (3)O16—C18—C23—O26−4.2 (3)
C1—C11—C12—N10179.75 (18)C19—C18—C23—C22−3.1 (3)
C9—C11—C12—C4−179.77 (18)O16—C18—C23—C22175.59 (18)
C1—C11—C12—C40.6 (3)C21—C22—C23—O26−179.0 (2)
C11—C9—C13—C144.1 (3)C21—C22—C23—C181.3 (3)
C15—C9—C13—C14−171.59 (19)C18—C19—O24—C25177.29 (18)
C11—C9—C13—C8−175.94 (19)C20—C19—O24—C25−1.8 (3)
C15—C9—C13—C88.4 (3)C18—C23—O26—C27−160.7 (2)
C7—C8—C13—C9−179.3 (2)C22—C23—O26—C2719.5 (3)
C7—C8—C13—C140.7 (3)O32—S29—C33—F35−177.69 (18)
C12—N10—C14—C5179.21 (18)O30—S29—C33—F35−57.6 (2)
C28—N10—C14—C51.8 (3)O31—S29—C33—F3562.9 (2)
C12—N10—C14—C13−1.7 (3)O32—S29—C33—F3662.8 (2)
C28—N10—C14—C13−179.15 (19)O30—S29—C33—F36−177.05 (19)
C6—C5—C14—N10−178.6 (2)O31—S29—C33—F36−56.6 (2)
C6—C5—C14—C132.3 (3)O32—S29—C33—F34−57.7 (2)
C9—C13—C14—N10−1.8 (3)O30—S29—C33—F3462.4 (2)
C8—C13—C14—N10178.23 (18)O31—S29—C33—F34−177.18 (18)
C9—C13—C14—C5177.31 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O30i0.932.573.449 (3)158
C4—H4···O31i0.932.583.352 (3)141
C7—H7···O32ii0.932.543.427 (3)159
C27—H27C···O17iii0.962.463.371 (3)159
C25—H25C···Cg4iv0.962.983.845 (3)150

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+2, −y, −z+1.

Table 2 S–O···π Interactions (Å,°)

XIJI···JX···JX—I···J
S29O31Cg3v3.968 (2)4.111 (2)85
S29O32Cg1v3.178 (2)3.757 (2)103
S29O32Cg2v3.512 (2)4.741 (2)145

Symmetry codes: (v) –x+1, –y+1, –z+1.Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively.

Table 3 π–π Interactions (Å,°)

IJCgI···CgJDihedral angleCgIPerpCgJPerpCgIOffsetCgJOffset
14ii3.641 (2)5.31 (10)3.416 (2)3.492 (2)0.767 (2)1.031 (2)
24ii3.885 (2)6.74 (11)3.666 (2)3.491 (2)1.286 (2)1.705 (2)

Symmetry code: (ii) x, –y+1/2, z–1/2.Notes: Cg1, Cg2 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C18–C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp and CgJPerp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2390).

References

  • Adamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett.14, 2313–2317. [PubMed]
  • Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601–5611. [PubMed]
  • Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [PubMed]
  • Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem.64, 3002–3008. [PubMed]
  • Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372–o373. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst.D65, 148–155. [PMC free article] [PubMed]
  • Steiner, T. (1999). Chem. Commun. pp. 313–314.
  • Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  • Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography