PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m375.
Published online 2009 March 6. doi:  10.1107/S1600536809007387
PMCID: PMC2968899

catena-Poly[[diaquacobalt(II)]-bis(μ-3-carboxy­adamantane-1-carboxyl­ato-κ2 O 1:O 3)]

Abstract

In the title compound, [Co(C12H15O4)2(H2O)2]n, adjacent CoII atoms (An external file that holds a picture, illustration, etc.
Object name is e-65-0m375-efi1.jpg symmetry) are bridged by 3-carboxy­adamantane-1-carboxyl­ate anions, forming a chain running along [001]. Inter­chain O—H(...)O hydrogen bonds link the chains into layers parallel to (100); the layers are further connected via inter­layer hydrogen bonds inter­actions, forming a three-dimensional framework.

Related literature

For related compounds, see: Nielsen et al. (2008 [triangle]); Zhao et al. (2007 [triangle]); Zheng et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m375-scheme1.jpg

Experimental

Crystal data

  • [Co(C12H15O4)2(H2O)2]
  • M r = 541.44
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m375-efi2.jpg
  • a = 10.718 (2) Å
  • b = 23.638 (5) Å
  • c = 9.0726 (18) Å
  • V = 2298.6 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 293 K
  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.921, T max = 0.925
  • 20865 measured reflections
  • 2622 independent reflections
  • 2145 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.086
  • S = 1.06
  • 2622 reflections
  • 161 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks ptcLa, I. DOI: 10.1107/S1600536809007387/ng2552sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007387/ng2552Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

supplementary crystallographic information

Comment

The cambridge Structural Database (Version 5.30, February 2009) lists few examples of metal (II) adamantane-1,3-dicarboxylates (Nielsen et al., 2008; Zhao et al., 2007). The dicarboxylate group is rigid, much more different from the aliphatic dicarboxylic acids (Zheng et al., 2008), effected severely by spacial steric hindrance. The asymmetric unit of the title compoud consists of one Co2+ cation, one aqua ligand and one Hadc- anion (H2adc = adamantane-1,3-dicarboxylic acid) (Fig.1). The Co atoms at the Wckoff 4a sites are crystallographically imposed by iversion center and are each located in an elongated octahedral coordination sphere defined by two aqua ligands and four carboxylate oxygen atoms from four 3-carboxyadamantane-1-carboxylate anions. The axial Co—O bond distances averaged at 2.106 (1) Å are slightly longer than the equatorial ones of 2.078 (1) Å. The trans- and cisoid O—Co—O angles fall in the regions 88.49 (5)–91.51 (5)° and 180°, respectively, exhibiting slight diviation from the corresponding values for a regular geometry (Table 1). Each carboxylate anion monodentately coordinates one Co2+ ion in syn fashion. Interestingly, one of the two carboxylate anions from each ligand is protonated and coordinates one Co2+ ion by carbonyl oxygen atom, which is rare in former reports. The Co2+ ions are bridged by 3-carboxyadamantane-1-carboxylate anions to form one-dimensional chains running along the [001] direction. On the basis of the interchain O—H···O hydrogen bonds (Table 2),these chains are assembled into layers parallel to (100) (Fig.2). The layers are further connected to form a three-dimensional framework via interlayer hydrogen bonds interaction.

Experimental

Adamantane-1,3-dicarboxylic acid (H2adc) (0.0666 g, 0.3 mmol), 1 M NaOH (0.5 ml, 0.5 mmol) was consequently added to 15 mol aqueous solution, then the mixture was heated constantly at 90 °C and stirred for 30 min, yielding colorless solution, to which was added CoCl2.6H2O (0.2485 g, 1.0 mmol) and continually stirred for 30 min, then the purple solution (pH = 5.12) was cooled to room temperature and laid undisturbed, purple block-like crystals was afforded after two weeks.

Refinement

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Figures

Fig. 1.
View of the molecular structure of the title compound, Displacement ellipsoids are drawn at the 45% probability level.[Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y + 1, -z; (iii) x, y, z - 1; (iv) -x + 1, -y + 1, -z + 1.]
Fig. 2.
The two-dimensional layer structure constructed by one-dimensional chains through hydrogen bonds interaction (the hydrogen bonds are neglected)

Crystal data

[Co(C12H15O4)2(H2O)2]F(000) = 1140
Mr = 541.44Dx = 1.565 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 20865 reflections
a = 10.718 (2) Åθ = 3.1–27.5°
b = 23.638 (5) ŵ = 0.81 mm1
c = 9.0726 (18) ÅT = 293 K
V = 2298.6 (8) Å3Block, purple
Z = 40.10 × 0.10 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer2622 independent reflections
Radiation source: fine-focus sealed tube2145 reflections with I > 2σ(I)
graphiteRint = 0.033
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −13→13
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −30→30
Tmin = 0.921, Tmax = 0.925l = −11→11
20865 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0444P)2 + 0.9177P] where P = (Fo2 + 2Fc2)/3
2622 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co0.50000.50000.00000.02148 (11)
C10.50924 (15)0.62852 (7)0.64285 (18)0.0239 (3)
C20.37038 (16)0.64210 (7)0.61757 (18)0.0300 (4)
H2A0.32130.60770.62460.036*
H2B0.34130.66830.69240.036*
C30.35442 (17)0.66835 (9)0.46523 (19)0.0343 (4)
H3A0.26600.67700.44900.041*
C40.39899 (16)0.62682 (8)0.34654 (18)0.0310 (4)
H4A0.34970.59240.35110.037*
H4B0.38780.64350.24980.037*
C50.53696 (15)0.61264 (7)0.37055 (16)0.0212 (3)
C60.55413 (17)0.58683 (7)0.52439 (16)0.0256 (3)
H6A0.64150.57800.54030.031*
H6B0.50690.55190.53150.031*
C70.4296 (2)0.72253 (8)0.4553 (2)0.0394 (5)
H7A0.40120.74900.52970.047*
H7B0.41760.73980.35930.047*
C80.56719 (19)0.70952 (7)0.47855 (19)0.0327 (4)
H8A0.61550.74460.47180.039*
C90.58580 (17)0.68311 (7)0.63123 (18)0.0295 (4)
H9A0.55940.70960.70680.035*
H9B0.67350.67480.64650.035*
C100.61268 (16)0.66778 (7)0.36080 (18)0.0278 (4)
H10A0.70050.65970.37580.033*
H10B0.60280.68440.26370.033*
C110.58484 (15)0.57136 (7)0.25371 (16)0.0247 (3)
O10.52461 (12)0.56998 (5)0.13165 (12)0.0296 (3)
O20.67854 (12)0.54217 (6)0.27703 (13)0.0378 (3)
C120.51789 (16)0.60130 (7)0.79318 (18)0.0280 (4)
O30.51926 (19)0.63717 (6)0.90404 (15)0.0615 (5)
H10.51540.62090.98230.074*
O40.51779 (12)0.55044 (5)0.80980 (13)0.0312 (3)
O50.69310 (12)0.48644 (6)0.00823 (12)0.0314 (3)
H20.71970.50190.08070.038*
H30.73330.5010−0.05750.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co0.02775 (18)0.02296 (17)0.01371 (17)0.00182 (11)0.00009 (11)0.00032 (11)
C10.0317 (9)0.0242 (7)0.0158 (7)0.0027 (6)0.0009 (6)0.0004 (6)
C20.0277 (9)0.0389 (9)0.0232 (8)−0.0011 (7)0.0058 (7)−0.0017 (7)
C30.0239 (9)0.0516 (11)0.0274 (8)0.0131 (8)−0.0004 (7)0.0010 (8)
C40.0250 (9)0.0467 (10)0.0213 (8)0.0020 (7)−0.0039 (6)−0.0009 (7)
C50.0233 (7)0.0267 (7)0.0137 (6)0.0007 (6)−0.0009 (6)−0.0011 (6)
C60.0361 (9)0.0243 (7)0.0164 (7)0.0041 (7)0.0003 (6)−0.0009 (6)
C70.0554 (13)0.0336 (9)0.0292 (9)0.0186 (9)0.0036 (9)0.0067 (8)
C80.0438 (11)0.0246 (8)0.0296 (9)−0.0059 (7)0.0065 (8)0.0010 (7)
C90.0349 (9)0.0297 (8)0.0239 (8)−0.0043 (7)−0.0014 (7)−0.0066 (7)
C100.0303 (9)0.0308 (8)0.0222 (8)−0.0032 (7)0.0047 (6)0.0028 (7)
C110.0298 (8)0.0283 (7)0.0160 (7)−0.0005 (6)0.0006 (6)0.0003 (6)
O10.0444 (7)0.0296 (6)0.0148 (5)0.0054 (5)−0.0070 (5)−0.0027 (5)
O20.0362 (7)0.0532 (8)0.0239 (6)0.0179 (6)−0.0045 (5)−0.0106 (6)
C120.0373 (10)0.0288 (8)0.0181 (8)0.0048 (7)0.0004 (6)−0.0005 (7)
O30.1393 (17)0.0298 (7)0.0155 (6)0.0092 (8)−0.0021 (7)−0.0003 (6)
O40.0484 (8)0.0268 (6)0.0185 (6)−0.0005 (5)0.0019 (5)0.0024 (5)
O50.0289 (7)0.0377 (6)0.0274 (6)0.0007 (5)0.0016 (5)−0.0031 (5)

Geometric parameters (Å, °)

Co—O1i2.0574 (12)C5—C101.538 (2)
Co—O12.0574 (12)C6—H6A0.9700
Co—O52.0956 (14)C6—H6B0.9700
Co—O5i2.0956 (14)C7—C81.522 (3)
Co—O4ii2.1061 (12)C7—H7A0.9700
Co—O4iii2.1061 (12)C7—H7B0.9700
C1—C121.511 (2)C8—C91.532 (2)
C1—C91.533 (2)C8—C101.534 (2)
C1—C61.535 (2)C8—H8A0.9800
C1—C21.540 (2)C9—H9A0.9700
C2—C31.525 (2)C9—H9B0.9700
C2—H2A0.9700C10—H10A0.9700
C2—H2B0.9700C10—H10B0.9700
C3—C71.516 (3)C11—O21.237 (2)
C3—C41.533 (2)C11—O11.2823 (19)
C3—H3A0.9800C12—O41.212 (2)
C4—C51.532 (2)C12—O31.316 (2)
C4—H4A0.9700O3—H10.8083
C4—H4B0.9700O4—Coiv2.1061 (12)
C5—C111.530 (2)O5—H20.8045
C5—C61.534 (2)O5—H30.8128
O1i—Co—O1180.00 (6)C6—C5—C10109.03 (13)
O1i—Co—O591.39 (5)C5—C6—C1110.11 (13)
O1—Co—O588.61 (5)C5—C6—H6A109.6
O1i—Co—O5i88.61 (5)C1—C6—H6A109.6
O1—Co—O5i91.39 (5)C5—C6—H6B109.6
O5—Co—O5i180.00 (6)C1—C6—H6B109.6
O1i—Co—O4ii90.51 (5)H6A—C6—H6B108.2
O1—Co—O4ii89.49 (5)C3—C7—C8109.63 (14)
O5—Co—O4ii88.49 (5)C3—C7—H7A109.7
O5i—Co—O4ii91.51 (5)C8—C7—H7A109.7
O1i—Co—O4iii89.49 (5)C3—C7—H7B109.7
O1—Co—O4iii90.51 (5)C8—C7—H7B109.7
O5—Co—O4iii91.51 (5)H7A—C7—H7B108.2
O5i—Co—O4iii88.49 (5)C7—C8—C9109.50 (15)
O4ii—Co—O4iii180.00 (5)C7—C8—C10109.98 (15)
C12—C1—C9112.81 (14)C9—C8—C10109.04 (14)
C12—C1—C6109.83 (13)C7—C8—H8A109.4
C9—C1—C6108.93 (14)C9—C8—H8A109.4
C12—C1—C2106.41 (13)C10—C8—H8A109.4
C9—C1—C2109.37 (14)C8—C9—C1109.59 (13)
C6—C1—C2109.42 (14)C8—C9—H9A109.8
C3—C2—C1109.17 (13)C1—C9—H9A109.8
C3—C2—H2A109.8C8—C9—H9B109.8
C1—C2—H2A109.8C1—C9—H9B109.8
C3—C2—H2B109.8H9A—C9—H9B108.2
C1—C2—H2B109.8C8—C10—C5109.71 (13)
H2A—C2—H2B108.3C8—C10—H10A109.7
C7—C3—C2109.76 (15)C5—C10—H10A109.7
C7—C3—C4109.50 (15)C8—C10—H10B109.7
C2—C3—C4109.95 (15)C5—C10—H10B109.7
C7—C3—H3A109.2H10A—C10—H10B108.2
C2—C3—H3A109.2O2—C11—O1122.85 (15)
C4—C3—H3A109.2O2—C11—C5120.66 (14)
C5—C4—C3109.93 (13)O1—C11—C5116.47 (14)
C5—C4—H4A109.7C11—O1—Co125.90 (11)
C3—C4—H4A109.7O4—C12—O3122.98 (16)
C5—C4—H4B109.7O4—C12—C1122.33 (15)
C3—C4—H4B109.7O3—C12—C1114.61 (15)
H4A—C4—H4B108.2C12—O3—H1111.4
C11—C5—C4111.41 (13)C12—O4—Coiv131.58 (11)
C11—C5—C6109.66 (13)Co—O5—H2108.0
C4—C5—C6109.40 (13)Co—O5—H3115.6
C11—C5—C10108.90 (13)H2—O5—H3102.6
C4—C5—C10108.42 (13)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) x, y, z−1; (iv) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H1···O1iv0.811.822.6058 (19)166
O5—H2···O20.802.072.7762 (18)147
O5—H3···O2v0.812.022.8334 (18)175

Symmetry codes: (iv) x, y, z+1; (v) −x+3/2, y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2552).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Nielsen, R. B., Kongshaug, K. O. & Fjellvåg, H. (2008). J. Mater. Chem.18, 1002–1007.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m2150.
  • Zheng, Y. Q., Lin, J. L., Xie, H. Z. & Wang, X. W. (2008). Inorg. Chem.47, 10280–10287. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography