PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m412.
Published online 2009 March 19. doi:  10.1107/S1600536809008976
PMCID: PMC2968894

Bis(μ-biphenyl-2,2′-dicarboxyl­ato)bis­[(2,2′-bipyridine)copper(II)]

Abstract

The title compound, [Cu2(C14H8O4)2(C10H8N2)2], was obtained by solvothermal synthesis. The CuII atom is coordinated by one chelating 2,2′-bipyridine ligand and two carboxyl groups from different biphenyl-2,2′-dicarboxyl­ate ligands, leading to a distorted octahedral environment. Each carboxyl­ate group makes one short Cu—O bond [1.9608 (14) and 1.9701 (14) Å] and one longer Cu—O contact [2.4338 (17) and 2.5541 (17) Å] to each CuII atom. The biphenyl-2,2′-dicarboxyl­ate ligands bridge between CuII atoms, forming a dinuclear complex around a crystallographic inversion centre.

Related literature

For complexes of biphenyl-2,2′-dicarboxylic acid, a good candidate for the construction of metal–organic frameworks, see: Rueff et al. (2003 [triangle]); Xu et al. (2006 [triangle]); An & Niu (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m412-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C14H8O4)2(C10H8N2)2]
  • M r = 919.86
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m412-efi1.jpg
  • a = 11.220 (2) Å
  • b = 13.350 (3) Å
  • c = 13.400 (3) Å
  • β = 103.02 (3)°
  • V = 1955.5 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 296 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.874, T max = 0.913
  • 10453 measured reflections
  • 3644 independent reflections
  • 3099 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.088
  • S = 1.00
  • 3644 reflections
  • 280 parameters
  • H-atom parameters not refined
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008976/bi2358sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008976/bi2358Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Maoming University.

supplementary crystallographic information

Comment

Biphenyl-2,2'-dicarboxylic acid (H2dpa) has been demonstrated to be a good candidate for the construction of metal-organic frameworks, and some complexes based on 2,2'-dpa have been reported (Rueff et al., 2003; Xu et al., 2006; An & Niu, 2008). In this paper, we report a new metal complex constructed from dpa, 2,2-bipyridine and copper(II) (Figure 1).

Experimental

A mixture of Cu(CH3COO)2.H2O (1 mmol), biphenyl-2,2'-dicarboxylic acid (1 mmol), and 2,2'-bipyridine (1 mmol) in 20 ml methanol/water (1:1) were placed in a 25 ml Teflon-lined stainless steel autoclave and kept at 453 K for five days. Blue crystals were obtained after cooling to room temperature.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure drawn with 30% probability displacement ellipsoids for the non-H atoms. Unlabelled atoms are related to labelled atoms by the symmetry code 1 - x, 1 - y, 1 - z.

Crystal data

[Cu2(C14H8O4)2(C10H8N2)2]F(000) = 940
Mr = 919.86Dx = 1.562 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3644 reflections
a = 11.220 (2) Åθ = 2.1–25.5°
b = 13.350 (3) ŵ = 1.15 mm1
c = 13.400 (3) ÅT = 296 K
β = 103.02 (3)°Block, blue
V = 1955.5 (7) Å30.12 × 0.10 × 0.08 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer3644 independent reflections
Radiation source: fine-focus sealed tube3099 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −13→13
Tmin = 0.874, Tmax = 0.913k = −16→10
10453 measured reflectionsl = −16→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters not refined
S = 1.00w = 1/[σ2(Fo2) + (0.063P)2 + 0.1P] where P = (Fo2 + 2Fc2)/3
3644 reflections(Δ/σ)max = 0.031
280 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.52301 (18)0.68894 (15)0.42300 (15)0.0295 (4)
C20.28746 (17)0.57752 (15)0.60591 (15)0.0293 (4)
C30.30695 (16)0.51522 (15)0.70154 (14)0.0270 (4)
C40.33117 (18)0.56634 (16)0.79532 (15)0.0341 (5)
H40.32740.63590.79600.041*
C50.36046 (19)0.51453 (18)0.88649 (15)0.0393 (5)
H50.37860.54890.94840.047*
C60.3627 (2)0.41049 (18)0.88508 (16)0.0404 (5)
H60.38210.37520.94640.048*
C70.33624 (19)0.35926 (16)0.79356 (16)0.0344 (5)
H70.33700.28960.79390.041*
C80.30828 (16)0.41025 (15)0.70031 (14)0.0268 (4)
C90.66065 (16)0.69929 (14)0.45025 (14)0.0270 (4)
C100.71452 (18)0.75479 (16)0.53682 (16)0.0358 (5)
H100.66460.78840.57250.043*
C110.83990 (19)0.76120 (16)0.57103 (17)0.0388 (5)
H110.87410.79920.62850.047*
C120.91368 (18)0.71022 (17)0.51856 (17)0.0393 (5)
H120.99830.71300.54100.047*
C130.86141 (19)0.65506 (15)0.43273 (17)0.0339 (5)
H130.91200.62080.39820.041*
C140.73499 (18)0.64916 (13)0.39621 (15)0.0270 (4)
C150.2751 (2)0.87802 (18)0.39294 (19)0.0426 (5)
H150.34260.88680.44700.051*
C160.2221 (2)0.96089 (18)0.3405 (2)0.0522 (7)
H160.25091.02480.36050.063*
C170.1257 (2)0.9477 (2)0.2579 (2)0.0557 (7)
H170.08961.00260.22020.067*
C180.0830 (2)0.85266 (19)0.2316 (2)0.0463 (6)
H180.01880.84250.17510.056*
C190.13647 (18)0.77206 (16)0.29011 (15)0.0320 (5)
C200.09346 (18)0.66758 (16)0.27505 (16)0.0322 (5)
C21−0.0050 (2)0.6365 (2)0.19990 (18)0.0442 (6)
H21−0.04770.68180.15220.053*
C22−0.0390 (2)0.5368 (2)0.19696 (18)0.0511 (7)
H22−0.10500.51450.14680.061*
C230.0242 (2)0.4706 (2)0.26769 (19)0.0481 (6)
H230.00140.40360.26640.058*
C240.1223 (2)0.50567 (17)0.34091 (17)0.0390 (5)
H240.16580.46120.38900.047*
Cu10.30127 (2)0.660694 (17)0.440302 (17)0.033 (2)
N10.15643 (14)0.60194 (13)0.34444 (12)0.0304 (4)
N20.23357 (15)0.78535 (13)0.36946 (12)0.0309 (4)
O10.46909 (13)0.65650 (12)0.33944 (13)0.0462 (4)
O20.46709 (12)0.71453 (11)0.49257 (10)0.0356 (3)
O30.23951 (18)0.66102 (11)0.60315 (13)0.0510 (5)
O40.32843 (13)0.54377 (10)0.53117 (10)0.0336 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0289 (10)0.0228 (10)0.0359 (11)−0.0009 (8)0.0052 (9)−0.0015 (8)
C20.0303 (10)0.0261 (11)0.0293 (10)−0.0008 (9)0.0020 (8)−0.0012 (8)
C30.0237 (9)0.0287 (11)0.0276 (10)0.0006 (8)0.0037 (8)−0.0014 (8)
C40.0347 (11)0.0317 (11)0.0353 (11)−0.0009 (9)0.0066 (9)−0.0056 (9)
C50.0389 (12)0.0508 (14)0.0255 (11)0.0029 (10)0.0017 (9)−0.0075 (9)
C60.0429 (12)0.0495 (14)0.0281 (11)0.0081 (11)0.0064 (9)0.0077 (10)
C70.0384 (12)0.0307 (11)0.0345 (12)0.0044 (9)0.0092 (9)0.0057 (9)
C80.0242 (9)0.0282 (11)0.0285 (10)0.0001 (8)0.0070 (8)0.0000 (8)
C90.0272 (10)0.0219 (10)0.0306 (10)−0.0026 (8)0.0037 (8)−0.0006 (8)
C100.0384 (12)0.0289 (11)0.0410 (12)−0.0041 (9)0.0112 (10)−0.0089 (9)
C110.0411 (12)0.0324 (12)0.0389 (12)−0.0111 (10)0.0006 (10)−0.0098 (9)
C120.0273 (10)0.0399 (13)0.0474 (13)−0.0093 (9)0.0017 (9)−0.0005 (10)
C130.0294 (11)0.0344 (12)0.0386 (12)−0.0011 (9)0.0094 (9)−0.0025 (9)
C140.0285 (10)0.0207 (10)0.0302 (11)−0.0030 (8)0.0035 (8)0.0037 (8)
C150.0469 (13)0.0349 (13)0.0462 (13)0.0000 (11)0.0107 (11)0.0032 (10)
C160.0572 (16)0.0295 (13)0.0745 (18)0.0032 (11)0.0246 (14)0.0086 (12)
C170.0516 (15)0.0475 (16)0.0698 (18)0.0163 (12)0.0177 (13)0.0268 (13)
C180.0385 (13)0.0495 (16)0.0488 (15)0.0134 (11)0.0053 (11)0.0158 (11)
C190.0284 (10)0.0400 (12)0.0292 (10)0.0078 (9)0.0095 (8)0.0072 (9)
C200.0260 (10)0.0433 (13)0.0281 (11)0.0036 (9)0.0077 (8)0.0052 (9)
C210.0310 (11)0.0635 (17)0.0344 (12)−0.0044 (11)−0.0006 (9)0.0078 (11)
C220.0376 (13)0.0725 (19)0.0395 (14)−0.0156 (12)0.0010 (11)−0.0042 (12)
C230.0442 (13)0.0493 (15)0.0501 (15)−0.0174 (11)0.0089 (11)−0.0039 (12)
C240.0381 (11)0.0380 (13)0.0391 (12)−0.0041 (10)0.0051 (10)0.0015 (10)
Cu10.045 (5)0.025 (4)0.028 (4)−0.004 (4)0.002 (4)0.002 (3)
N10.0279 (8)0.0338 (10)0.0284 (9)−0.0003 (7)0.0042 (7)0.0018 (7)
N20.0308 (9)0.0305 (10)0.0315 (9)0.0017 (7)0.0069 (7)0.0038 (7)
O10.0303 (8)0.0595 (11)0.0457 (10)−0.0038 (7)0.0022 (7)−0.0248 (8)
O20.0284 (7)0.0461 (10)0.0318 (8)−0.0007 (6)0.0058 (6)−0.0052 (6)
O30.0790 (13)0.0343 (10)0.0429 (10)0.0232 (8)0.0207 (9)0.0070 (7)
O40.0423 (8)0.0315 (8)0.0269 (7)0.0067 (6)0.0078 (6)0.0043 (6)

Geometric parameters (Å, °)

Cu1—O12.5541 (17)C11—H110.930
Cu1—O21.9701 (14)C12—C131.380 (3)
Cu1—O32.4338 (17)C12—H120.930
Cu1—O41.9608 (14)C13—C141.395 (3)
Cu1—N11.9914 (17)C13—H130.930
Cu1—N21.9806 (17)C14—C8i1.502 (3)
C1—O11.226 (2)C15—N21.334 (3)
C1—O21.282 (2)C15—C161.372 (3)
C1—C91.511 (3)C15—H150.930
C2—O31.235 (2)C16—C171.373 (4)
C2—O41.275 (2)C16—H160.930
C2—C31.502 (3)C17—C181.374 (4)
C3—C81.402 (3)C17—H170.930
C3—C41.402 (3)C18—C191.386 (3)
C4—C51.378 (3)C18—H180.930
C4—H40.930C19—N21.352 (3)
C5—C61.389 (3)C19—C201.475 (3)
C5—H50.930C20—N11.355 (3)
C6—C71.377 (3)C20—C211.381 (3)
C6—H60.930C21—C221.383 (4)
C7—C81.395 (3)C21—H210.930
C7—H70.930C22—C231.370 (4)
C8—C14i1.502 (3)C22—H220.930
C9—C141.393 (3)C23—C241.381 (3)
C9—C101.394 (3)C23—H230.9300
C10—C111.381 (3)C24—N11.339 (3)
C10—H100.930C24—H240.930
C11—C121.380 (3)
O1—C1—O2122.48 (18)C17—C16—H16120.6
O1—C1—C9121.35 (18)C15—C16—H16120.6
O2—C1—C9116.17 (17)C16—C17—C18119.4 (2)
O3—C2—O4121.83 (18)C16—C17—H17120.3
O3—C2—C3120.29 (18)C18—C17—H17120.3
O4—C2—C3117.75 (17)C19—C18—C17119.4 (2)
C8—C3—C4119.79 (18)C19—C18—H18120.3
C8—C3—C2122.93 (17)C17—C18—H18120.3
C4—C3—C2117.19 (18)N2—C19—C18120.8 (2)
C5—C4—C3120.7 (2)N2—C19—C20114.37 (17)
C5—C4—H4119.7C18—C19—C20124.8 (2)
C3—C4—H4119.7N1—C20—C21121.0 (2)
C4—C5—C6119.4 (2)N1—C20—C19114.45 (18)
C4—C5—H5120.3C21—C20—C19124.6 (2)
C6—C5—H5120.3C20—C21—C22118.7 (2)
C7—C6—C5120.52 (19)C20—C21—H21120.7
C7—C6—H6119.7C22—C21—H21120.7
C5—C6—H6119.7C23—C22—C21120.3 (2)
C6—C7—C8121.0 (2)C23—C22—H22119.9
C6—C7—H7119.5C21—C22—H22119.9
C8—C7—H7119.5C22—C23—C24118.6 (2)
C7—C8—C3118.56 (18)C22—C23—H23120.7
C7—C8—C14i118.53 (18)C24—C23—H23120.7
C3—C8—C14i122.41 (17)N1—C24—C23121.8 (2)
C14—C9—C10119.32 (18)N1—C24—H24119.1
C14—C9—C1121.98 (17)C23—C24—H24119.1
C10—C9—C1118.52 (17)O4—Cu1—O293.87 (6)
C11—C10—C9121.83 (19)O4—Cu1—N2162.88 (6)
C11—C10—H10119.1O2—Cu1—N295.36 (7)
C9—C10—H10119.1O4—Cu1—N194.42 (7)
C12—C11—C10118.92 (19)O2—Cu1—N1160.23 (6)
C12—C11—H11120.5N2—Cu1—N181.52 (7)
C10—C11—H11120.5O4—Cu1—O358.70 (5)
C11—C12—C13119.77 (19)O2—Cu1—O396.74 (7)
C11—C12—H12120.1N2—Cu1—O3105.80 (6)
C13—C12—H12120.1N1—Cu1—O3102.90 (7)
C14—C13—C12122.0 (2)C24—N1—C20119.72 (18)
C14—C13—H13119.0C24—N1—Cu1125.89 (14)
C12—C13—H13119.0C20—N1—Cu1114.30 (14)
C13—C14—C9118.12 (18)C15—N2—C19118.94 (18)
C13—C14—C8i115.98 (17)C15—N2—Cu1126.17 (15)
C9—C14—C8i125.89 (17)C19—N2—Cu1114.89 (14)
N2—C15—C16122.6 (2)C1—O2—Cu1102.82 (12)
N2—C15—H15118.7C2—O3—Cu179.35 (12)
C16—C15—H15118.7C2—O4—Cu199.98 (12)
C17—C16—C15118.8 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2358).

References

  • An, Z. & Niu, X.-C. (2008). Acta Cryst. E64, m1556. [PMC free article] [PubMed]
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173–4178.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des.6, 2029–2035.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography