PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): o670.
Published online 2009 March 6. doi:  10.1107/S160053680900720X
PMCID: PMC2968892

24,4,8-Trioxa-21-aza-1,3,6(1,2)-tri­benzena-2(2,3)-bicyclo­[3.3.0]octa­na­cyclo­octa­phane

Abstract

The crystal structure of the title compound, C26H25NO3, was determined as part of an investigation of host–guest and electron donor–acceptor complexes. The oxazole and the pyrrole rings both adopt envelope conformations. The dihedral angle between the two benzene rings directly linked to the oxazole ring is 49.5 (1)°. The crystal structure is stabilized by a C—H(...)π inter­action.

Related literature

For biological properties of azomethine ylides, see: Chiacchio et al. (2003 [triangle]). For general background, see: Diederich (1991 [triangle]); Cram & Cram (1994 [triangle]); Morrison & Hoger (1996 [triangle]); Padwa (1984 [triangle]). For reference bond-length data, see: Allen et al. (1987 [triangle]).For puckering and asymmetry parameters, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o670-scheme1.jpg

Experimental

Crystal data

  • C26H25NO3
  • M r = 399.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o670-efi1.jpg
  • a = 31.1942 (7) Å
  • b = 8.3992 (2) Å
  • c = 16.0323 (4) Å
  • β = 101.468 (1)°
  • V = 4116.70 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.979, T max = 0.983
  • 22005 measured reflections
  • 5004 independent reflections
  • 2790 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.213
  • S = 1.03
  • 5004 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900720X/wn2311sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900720X/wn2311Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BB thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

The design and synthesis of cyclophanes possessing rigidly defined cavities and shape-persistent structures of molecular dimensions is of interest as molecular hosts in the areas of host-guest and electron donor-acceptor complexes (Diederich, 1991; Cram & Cram, 1994; Morrison & Hoger, 1996). 1,3-Dipolar cycloaddition reactions afford efficient methods for the construction of heterocyclic units in a highly regio- and stereoselective manner (Padwa, 1984). In particular, the chemistry of azomethine ylides has gained significance in recent years as it serves as an expedient route for the construction of nitrogen heterocycles. N and O heterocycles have also been shown to provide useful information about anticancer and antiviral properties (Chiacchio et al., 2003).

In the crystal structure of the title compound, the oxazole ring adopts an envelope conformation with atom C15 displaced by 0.172 (3) Å from the plane of the other ring atoms N1/O3//C14/C19. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 =0.275 (2) Å, [var phi] = 152.3 (5)°, ΔS(C15) = 5.7 (2)° and Δ2(C19) = 8.5 (2)°. The pyrrole ring also adopts an envelope conformation with atom C18 displaced by 0.208 (3) Å from the plane of the other ring atoms C15/C16/C17/N1. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2= 0.329 (3) Å, [var phi] = 144.0 (6)°, ΔS(C18) = 0.9 (4)° and Δ2(C16) = 16.5 (4)°.

The conformation of the cyclophane ring O1/ C7/ C6/ C1/ C26/ O2/ C21/ C20/ C19/ C14/ C13/ C8 is described by the torsion angles in Table 1. The dihedral angle between the two benzene rings directly linked to the oxazole ring is 49.5 (1)°. The bond lengths (Allen et al., 1987) and bond angles are in agreement with the values reported in literature.

The crystal structure is stabilized by a C—H···π (C7—H7A···Cg1) interaction, where Cg1 is the centroid of the C1—C6 ring.

Experimental

To a solution of O,O'-coupled salicylaldehyde (bis aldehyde), using o-xylylene bromide (2 mmol) in dry acetonitrile (20 ml), was added L-proline (1 mmol) under an N2 atmosphere. The reaction was refluxed for 4 h. After completion of the reaction, the solvent was distilled off under reduced pressure and the crude product was purified by column chromatography.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound, showing 30% probability displacement ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen atoms of the benzene rings are omitted for clarity.

Crystal data

C26H25NO3F(000) = 1696
Mr = 399.47Dx = 1.289 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: C2/cCell parameters from 4735 reflections
a = 31.1942 (7) Åθ = 1.3–28.2°
b = 8.3992 (2) ŵ = 0.08 mm1
c = 16.0323 (4) ÅT = 293 K
β = 101.468 (1)°Block, colourless
V = 4116.70 (17) Å30.25 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker Kappa APEXII area-detector diffractometer5004 independent reflections
Radiation source: fine-focus sealed tube2790 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 28.2°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −40→41
Tmin = 0.979, Tmax = 0.983k = −11→10
22005 measured reflectionsl = −20→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.1118P)2 + 1.2039P] where P = (Fo2 + 2Fc2)/3
5004 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.20831 (5)1.12120 (17)0.44961 (9)0.0625 (4)
O20.14559 (5)0.87432 (17)0.35663 (10)0.0594 (4)
O30.11764 (7)1.3961 (2)0.32924 (11)0.0843 (6)
N10.06599 (6)1.2386 (2)0.24650 (12)0.0645 (5)
C10.21940 (7)0.7919 (3)0.37217 (15)0.0599 (6)
C20.22911 (10)0.7010 (3)0.30588 (17)0.0781 (8)
H20.20900.62620.27940.094*
C30.26785 (11)0.7196 (4)0.27879 (19)0.0905 (9)
H30.27390.65770.23450.109*
C40.29724 (11)0.8295 (4)0.3174 (2)0.0923 (9)
H40.32360.84190.29930.111*
C50.28860 (8)0.9222 (3)0.38261 (18)0.0752 (7)
H50.30900.99710.40810.090*
C60.24927 (8)0.9047 (3)0.41087 (15)0.0607 (6)
C70.24064 (8)1.0041 (3)0.48294 (15)0.0668 (6)
H7A0.23020.93760.52420.080*
H7B0.26741.05600.51120.080*
C80.17635 (7)1.1527 (2)0.49412 (13)0.0527 (5)
C90.18214 (9)1.1313 (3)0.58168 (14)0.0665 (6)
H90.20891.09640.61250.080*
C100.14848 (10)1.1616 (3)0.62241 (16)0.0745 (7)
H100.15231.14560.68080.089*
C110.10922 (10)1.2155 (3)0.57754 (17)0.0774 (7)
H110.08621.23430.60520.093*
C120.10395 (8)1.2421 (3)0.49096 (16)0.0704 (7)
H120.07741.28160.46120.084*
C130.13715 (7)1.2113 (2)0.44787 (13)0.0525 (5)
C140.13172 (7)1.2381 (3)0.35333 (14)0.0563 (5)
H140.16031.22240.33810.068*
C150.07270 (10)1.3900 (3)0.28885 (17)0.0798 (8)
H150.05381.40130.33060.096*
C160.06289 (13)1.5177 (4)0.22115 (19)0.1011 (10)
H16A0.03881.58450.23010.121*
H16B0.08841.58400.22130.121*
C170.05085 (14)1.4273 (4)0.1393 (2)0.1170 (12)
H17A0.01931.42200.12090.140*
H17B0.06311.47820.09500.140*
C180.06941 (10)1.2667 (3)0.15755 (16)0.0816 (8)
H18A0.05281.18820.12010.098*
H18B0.09971.26310.15110.098*
C190.09799 (7)1.1284 (2)0.29399 (13)0.0525 (5)
H190.11331.07700.25340.063*
C200.07809 (7)0.9999 (3)0.33905 (12)0.0519 (5)
C210.10425 (7)0.8702 (2)0.37255 (13)0.0540 (5)
C220.08812 (9)0.7507 (3)0.41656 (16)0.0687 (7)
H220.10580.66570.43910.082*
C230.04511 (10)0.7597 (3)0.42659 (19)0.0816 (8)
H230.03380.68010.45630.098*
C240.01903 (9)0.8843 (4)0.3933 (2)0.0832 (8)
H24−0.00990.88860.40010.100*
C250.03556 (8)1.0033 (3)0.34981 (16)0.0698 (7)
H250.01761.08750.32730.084*
C260.17676 (7)0.7624 (3)0.39923 (16)0.0657 (6)
H26A0.16680.65480.38450.079*
H26B0.18040.77500.46040.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0701 (10)0.0589 (9)0.0583 (9)0.0164 (7)0.0121 (8)0.0064 (7)
O20.0591 (9)0.0554 (9)0.0626 (9)0.0100 (7)0.0094 (7)0.0100 (7)
O30.1190 (16)0.0529 (10)0.0703 (11)−0.0025 (9)−0.0067 (10)0.0091 (8)
N10.0603 (12)0.0722 (13)0.0579 (11)0.0056 (9)0.0046 (9)0.0161 (9)
C10.0632 (14)0.0525 (12)0.0595 (13)0.0157 (10)0.0015 (11)0.0063 (10)
C20.0860 (19)0.0707 (16)0.0692 (16)0.0215 (13)−0.0045 (14)−0.0063 (13)
C30.098 (2)0.100 (2)0.0741 (18)0.0352 (18)0.0192 (17)−0.0050 (16)
C40.083 (2)0.111 (2)0.089 (2)0.0345 (18)0.0320 (17)0.0158 (19)
C50.0646 (16)0.0723 (16)0.0863 (18)0.0094 (12)0.0089 (13)0.0138 (14)
C60.0640 (14)0.0521 (12)0.0622 (14)0.0154 (10)0.0035 (11)0.0072 (10)
C70.0656 (15)0.0626 (14)0.0653 (15)0.0142 (11)−0.0032 (11)0.0013 (11)
C80.0643 (13)0.0428 (11)0.0487 (11)−0.0024 (9)0.0059 (10)−0.0038 (8)
C90.0797 (16)0.0666 (15)0.0478 (12)−0.0007 (12)−0.0003 (11)−0.0036 (10)
C100.104 (2)0.0747 (16)0.0452 (12)−0.0122 (14)0.0145 (14)−0.0080 (11)
C110.0869 (19)0.0867 (19)0.0649 (16)−0.0075 (14)0.0302 (15)−0.0144 (13)
C120.0687 (15)0.0807 (17)0.0619 (15)0.0058 (12)0.0136 (12)−0.0048 (12)
C130.0616 (13)0.0468 (11)0.0486 (11)−0.0020 (9)0.0097 (10)−0.0061 (9)
C140.0621 (13)0.0550 (13)0.0502 (12)0.0010 (9)0.0074 (10)0.0041 (9)
C150.104 (2)0.0718 (17)0.0639 (15)0.0302 (14)0.0183 (15)0.0094 (12)
C160.144 (3)0.080 (2)0.0763 (19)0.0394 (18)0.0144 (18)0.0199 (16)
C170.178 (4)0.086 (2)0.078 (2)0.009 (2)0.004 (2)0.0264 (18)
C180.102 (2)0.0821 (18)0.0520 (14)−0.0150 (14)−0.0052 (13)0.0114 (12)
C190.0564 (12)0.0537 (12)0.0461 (11)0.0062 (9)0.0074 (9)0.0007 (9)
C200.0541 (13)0.0550 (12)0.0445 (11)0.0000 (9)0.0046 (9)−0.0044 (9)
C210.0617 (13)0.0503 (12)0.0473 (11)−0.0052 (9)0.0044 (9)−0.0047 (9)
C220.0781 (17)0.0597 (14)0.0647 (15)−0.0086 (11)0.0053 (12)0.0034 (11)
C230.092 (2)0.0769 (18)0.0759 (18)−0.0253 (15)0.0164 (15)0.0091 (14)
C240.0637 (16)0.094 (2)0.093 (2)−0.0116 (14)0.0185 (14)0.0062 (16)
C250.0621 (15)0.0729 (16)0.0733 (16)−0.0012 (11)0.0109 (12)0.0062 (12)
C260.0678 (15)0.0525 (13)0.0717 (15)0.0072 (10)0.0019 (12)0.0098 (11)

Geometric parameters (Å, °)

O1—C81.362 (2)C11—H110.9300
O1—C71.433 (2)C12—C131.379 (3)
O2—C211.364 (3)C12—H120.9300
O2—C261.425 (2)C13—C141.508 (3)
O3—C151.423 (3)C14—C191.569 (3)
O3—C141.427 (3)C14—H140.9800
N1—C151.437 (3)C15—C161.513 (4)
N1—C191.459 (3)C15—H150.9800
N1—C181.470 (3)C16—C171.498 (5)
C1—C61.386 (3)C16—H16A0.9700
C1—C21.390 (3)C16—H16B0.9700
C1—C261.500 (3)C17—C181.475 (4)
C2—C31.372 (4)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.360 (5)C18—H18A0.9700
C3—H30.9300C18—H18B0.9700
C4—C51.373 (4)C19—C201.501 (3)
C4—H40.9300C19—H190.9800
C5—C61.398 (3)C20—C251.372 (3)
C5—H50.9300C20—C211.402 (3)
C6—C71.493 (3)C21—C221.378 (3)
C7—H7A0.9700C22—C231.385 (4)
C7—H7B0.9700C22—H220.9300
C8—C131.388 (3)C23—C241.367 (4)
C8—C91.391 (3)C23—H230.9300
C9—C101.366 (4)C24—C251.376 (4)
C9—H90.9300C24—H240.9300
C10—C111.368 (4)C25—H250.9300
C10—H100.9300C26—H26A0.9700
C11—C121.383 (4)C26—H26B0.9700
C8—O1—C7118.15 (17)O3—C15—N1106.52 (19)
C21—O2—C26118.28 (17)O3—C15—C16110.0 (3)
C15—O3—C14108.19 (18)N1—C15—C16107.4 (2)
C15—N1—C19107.11 (18)O3—C15—H15110.9
C15—N1—C18106.54 (19)N1—C15—H15110.9
C19—N1—C18115.7 (2)C16—C15—H15110.9
C6—C1—C2119.2 (2)C17—C16—C15104.4 (3)
C6—C1—C26122.7 (2)C17—C16—H16A110.9
C2—C1—C26118.1 (2)C15—C16—H16A110.9
C3—C2—C1121.3 (3)C17—C16—H16B110.9
C3—C2—H2119.4C15—C16—H16B110.9
C1—C2—H2119.4H16A—C16—H16B108.9
C4—C3—C2119.3 (3)C18—C17—C16105.6 (2)
C4—C3—H3120.3C18—C17—H17A110.6
C2—C3—H3120.3C16—C17—H17A110.6
C3—C4—C5121.0 (3)C18—C17—H17B110.6
C3—C4—H4119.5C16—C17—H17B110.6
C5—C4—H4119.5H17A—C17—H17B108.7
C4—C5—C6120.3 (3)N1—C18—C17103.8 (2)
C4—C5—H5119.8N1—C18—H18A111.0
C6—C5—H5119.8C17—C18—H18A111.0
C1—C6—C5118.8 (2)N1—C18—H18B111.0
C1—C6—C7121.3 (2)C17—C18—H18B111.0
C5—C6—C7119.8 (2)H18A—C18—H18B109.0
O1—C7—C6108.49 (18)N1—C19—C20113.70 (17)
O1—C7—H7A110.0N1—C19—C14104.53 (17)
C6—C7—H7A110.0C20—C19—C14114.96 (17)
O1—C7—H7B110.0N1—C19—H19107.8
C6—C7—H7B110.0C20—C19—H19107.8
H7A—C7—H7B108.4C14—C19—H19107.8
O1—C8—C13116.60 (18)C25—C20—C21118.2 (2)
O1—C8—C9122.8 (2)C25—C20—C19123.3 (2)
C13—C8—C9120.6 (2)C21—C20—C19118.58 (18)
C10—C9—C8120.0 (2)O2—C21—C22124.7 (2)
C10—C9—H9120.0O2—C21—C20114.11 (18)
C8—C9—H9120.0C22—C21—C20121.2 (2)
C9—C10—C11120.2 (2)C21—C22—C23118.7 (2)
C9—C10—H10119.9C21—C22—H22120.6
C11—C10—H10119.9C23—C22—H22120.6
C10—C11—C12119.8 (2)C24—C23—C22120.8 (2)
C10—C11—H11120.1C24—C23—H23119.6
C12—C11—H11120.1C22—C23—H23119.6
C13—C12—C11121.4 (2)C23—C24—C25120.0 (3)
C13—C12—H12119.3C23—C24—H24120.0
C11—C12—H12119.3C25—C24—H24120.0
C12—C13—C8117.9 (2)C20—C25—C24121.2 (2)
C12—C13—C14122.0 (2)C20—C25—H25119.4
C8—C13—C14120.04 (19)C24—C25—H25119.4
O3—C14—C13112.20 (18)O2—C26—C1108.19 (18)
O3—C14—C19104.38 (17)O2—C26—H26A110.1
C13—C14—C19116.72 (18)C1—C26—H26A110.1
O3—C14—H14107.7O2—C26—H26B110.1
C13—C14—H14107.7C1—C26—H26B110.1
C19—C14—H14107.7H26A—C26—H26B108.4
C6—C1—C2—C30.7 (4)C19—N1—C15—C16145.9 (2)
C26—C1—C2—C3−178.8 (2)C18—N1—C15—C1621.5 (3)
C1—C2—C3—C4−0.2 (4)O3—C15—C16—C17115.0 (3)
C2—C3—C4—C5−0.3 (5)N1—C15—C16—C17−0.5 (4)
C3—C4—C5—C60.3 (4)C15—C16—C17—C18−20.5 (4)
C2—C1—C6—C5−0.7 (3)C15—N1—C18—C17−34.3 (3)
C26—C1—C6—C5178.8 (2)C19—N1—C18—C17−153.2 (2)
C2—C1—C6—C7−179.3 (2)C16—C17—C18—N133.6 (4)
C26—C1—C6—C70.2 (3)C15—N1—C19—C20111.9 (2)
C4—C5—C6—C10.2 (3)C18—N1—C19—C20−129.5 (2)
C4—C5—C6—C7178.9 (2)C15—N1—C19—C14−14.3 (2)
C8—O1—C7—C6138.6 (2)C18—N1—C19—C14104.3 (2)
C1—C6—C7—O1−74.0 (3)O3—C14—C19—N1−4.3 (2)
C5—C6—C7—O1107.5 (2)C13—C14—C19—N1120.2 (2)
C7—O1—C8—C13−154.37 (19)O3—C14—C19—C20−129.65 (19)
C7—O1—C8—C926.9 (3)C13—C14—C19—C20−5.2 (3)
O1—C8—C9—C10−178.5 (2)N1—C19—C20—C25−12.9 (3)
C13—C8—C9—C102.8 (3)C14—C19—C20—C25107.6 (2)
C8—C9—C10—C11−1.1 (4)N1—C19—C20—C21167.67 (18)
C9—C10—C11—C12−1.2 (4)C14—C19—C20—C21−71.9 (2)
C10—C11—C12—C131.8 (4)C26—O2—C21—C22−10.6 (3)
C11—C12—C13—C8−0.1 (3)C26—O2—C21—C20170.11 (18)
C11—C12—C13—C14179.4 (2)C25—C20—C21—O2178.11 (19)
O1—C8—C13—C12179.08 (19)C19—C20—C21—O2−2.4 (3)
C9—C8—C13—C12−2.2 (3)C25—C20—C21—C22−1.2 (3)
O1—C8—C13—C14−0.4 (3)C19—C20—C21—C22178.2 (2)
C9—C8—C13—C14178.3 (2)O2—C21—C22—C23−178.6 (2)
C15—O3—C14—C13−105.7 (2)C20—C21—C22—C230.7 (3)
C15—O3—C14—C1921.6 (2)C21—C22—C23—C240.2 (4)
C12—C13—C14—O354.1 (3)C22—C23—C24—C25−0.5 (4)
C8—C13—C14—O3−126.5 (2)C21—C20—C25—C240.9 (3)
C12—C13—C14—C19−66.3 (3)C19—C20—C25—C24−178.5 (2)
C8—C13—C14—C19113.2 (2)C23—C24—C25—C20−0.1 (4)
C14—O3—C15—N1−31.6 (3)C21—O2—C26—C1−179.37 (17)
C14—O3—C15—C16−147.6 (2)C6—C1—C26—O284.9 (3)
C19—N1—C15—O328.2 (2)C2—C1—C26—O2−95.5 (2)
C18—N1—C15—O3−96.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.972.943.827 (3)153

Symmetry codes: (i) −x+1/2, −y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2311).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Resifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003). Tetrahedron Asymmetry, 14, 2717–2723.
  • Cram, D. J. & Cram, D. M. (1994). Container Molecules and Their Guests Cambridge: Royal Society of Chemistry.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  • Diederich, F. (1991). Cyclophanes Cambridge: Royal Society of Chemistry.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Morrison, D. L. & Hoger, S. (1996). Chem. Commun. pp. 2313–2314.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Padwa, A. (1984). Editor. 1-3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography