PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 April 1; 65(Pt 4): m401.
Published online 2009 March 14. doi:  10.1107/S1600536809008204
PMCID: PMC2968887

Isopropyl N-[1′-(methoxy­carbon­yl)ferro­cen­yl]carbamate–ethyl N-[1′-(methoxy­carbon­yl)ferrocen­yl]carbamate (0.6/0.4)

Abstract

Herein we report the crystal structure and synthesis of two cocrystallized complexes, [Fe(C7H7O2)(C9H12NO2)]0.6[Fe(C7H7O2)(C8H10NO2)]0.4. The molecules crystallize as layers in the bc plane with van der Waals interactions allowing the alkyl chains to interact and the ferrocene units to form a herringbone pattern up the c axis. Every second layer is linked via N—H(...)O hydrogen bonding.The two complexes were modelled as disordered in a ratio of 0.60:0.40.

Related literature

For background information, see: Barišić et al. (2002 [triangle], 2006 [triangle]); Pavlović et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m401-scheme1.jpg

Experimental

Crystal data

  • [Fe(C7H7O2)(C9H12NO2)]0.6[Fe(C7H7O2)(C8H10NO2)]0.4
  • M r = 339.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m401-efi1.jpg
  • a = 9.7494 (19) Å
  • b = 15.624 (3) Å
  • c = 9.860 (2) Å
  • β = 100.82 (3)°
  • V = 1475.2 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 150 K
  • 0.40 × 0.22 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.740, T max = 0.906
  • 14609 measured reflections
  • 3377 independent reflections
  • 2817 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.100
  • S = 1.05
  • 3377 reflections
  • 257 parameters
  • 391 restraints
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008204/kj2117sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008204/kj2117Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the NSERC.

supplementary crystallographic information

Comment

Methyloxy-2'-(tertbutyloxycarbonylamino)ferrocene-1-carboxylate [{MeOC(O)Cp}Fe{CpN(H)C(O)OCMe3}] (where Cp = η5-C5H4) has been used as a synthon in the preparation of ferrocene amino acid (Fca) peptide conjugates. This unnatural amino acid provides a convenient route to C– or N-terminal labelling of α-amino acids and peptides in both solution and solid phase (Barišić et al. 2006). The C-terminal conjugation of the natural amino acid and peptides to Fca requires the removal of the tert-butyloxy (t-Boc) group under acidic conditions. The resultant product {MeOC(O)Cp}Fe{CpNH2} is highly unstable, and usually coupled in situ to the active ester derivative of amino acids. In our attempts to trap and crystallize this species, the title compounds (1) and (2) were produced, which might give an insight into the decomposition pathways of the t-Boc group in acidic medium. It is believed that crystallization occurred during partial decomposition and two intermediates in the stepwise decomposition were isolated crystallographhically.

There were two molecules co-crystallized in the asymmetric unit. The two molecules were crystallographically identical except for the side chain; one was –N(H)C(O)OCHMe2 (60%) and the other was –N(H)C(O)OCH2Me (40%). The molecules revealed close contacts between the hydrogen atom attached to the nitrogen and the carbonyl atoms of the adjacent molecuel. Essentially, dimers are formed via hydrogen bonding (Table 1).

Experimental

The ferrocene compound {MeOC(O)Cp}Fe{CpN(H)C(O)OCMe3} was prepared by standard procedures reported by Rapić and coworkers (Barišić et al., 2002; Pavlović et al., 2003). The synthesis of the ferrocene derivative {MeOC(O)Cp}Fe{CpNH2} requires the removal of the t-Boc group using trifluoroacetic acid (TFA) under argon. After several minutes, the reaction progress was quenched with a base (triethyl amine). Orange plates of the mixed crystal of the title compounds [{MeOC(O)Cp}Fe{CpN(H)C(O)OCHMe2}] and [{MeOC(O)Cp}Fe{CpN(H)C(O)OCH2Me}] were grown from a concentrated methylene chloride solution by slow diffusion of hexane.

Refinement

All H atoms were positioned geometrically and constrained as riding atoms with C—H = 1.00Å and Uiso(H) = 1.2Ueq(C) for methyne H atoms and C—H = 0.99Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms and C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and N—H = 0.88Å and Uiso(H) = 1.2Ueq(C) for amine H atoms. Soft proximity (SIMU) and rigid-bond restraints (DELU) were applied to the anisotropic displacement parameters.

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement ellipsoids and the atom labelling scheme.

Crystal data

[Fe(C7H7O2)(C9H12NO2)]0.6[Fe(C7H7O2)(C8H10NO2)]0.4F(000) = 707
Mr = 339.56Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13419 reflections
a = 9.7494 (19) Åθ = 2.0–27.5°
b = 15.624 (3) ŵ = 1.04 mm1
c = 9.860 (2) ÅT = 150 K
β = 100.82 (3)°Plate, orange
V = 1475.2 (5) Å30.40 × 0.22 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer3377 independent reflections
Radiation source: fine-focus sealed tube2817 reflections with I > 2σ(I)
graphiteRint = 0.063
[var phi] scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995)h = −12→12
Tmin = 0.740, Tmax = 0.906k = −20→20
14609 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0444P)2 + 1.0113P] where P = (Fo2 + 2Fc2)/3
3377 reflections(Δ/σ)max = 0.002
257 parametersΔρmax = 0.44 e Å3
391 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Fe0.78558 (3)1.126971 (18)0.20906 (3)0.02654 (11)
C10.6804 (2)1.19504 (13)0.3330 (2)0.0321 (4)
H1A0.58071.18670.34180.039*
C20.7297 (3)1.25123 (14)0.2403 (2)0.0367 (5)
H2A0.67051.28870.17060.044*
C30.8778 (3)1.24367 (14)0.2608 (2)0.0372 (5)
H3A0.94031.27500.20800.045*
C40.9215 (2)1.18269 (14)0.3677 (2)0.0323 (4)
H4A1.01971.16420.40400.039*
C50.7997 (2)1.15270 (13)0.4133 (2)0.0281 (4)
C60.7987 (2)1.08701 (13)0.5188 (2)0.0279 (4)
O70.90170 (15)1.05702 (10)0.59097 (17)0.0360 (4)
O80.66914 (15)1.06384 (10)0.53090 (16)0.0329 (3)
C90.6609 (3)1.00237 (16)0.6387 (3)0.0401 (5)
H9A0.71210.95040.62290.060*
H9B0.56290.98800.63770.060*
H9C0.70221.02700.72850.060*
C100.8967 (2)1.03436 (15)0.1286 (2)0.0364 (5)
H10A0.99871.02230.15750.044*
C110.8348 (3)1.09292 (16)0.0240 (2)0.0390 (5)
H11A0.88601.1292−0.03360.047*
C120.6877 (2)1.09098 (15)0.0158 (2)0.0366 (5)
H12A0.61781.1258−0.04840.044*
C130.6566 (2)1.03129 (14)0.1156 (2)0.0326 (5)
H13A0.56181.01670.13360.039*
C140.7866 (2)0.99586 (13)0.1840 (2)0.0308 (4)
N15A0.8170 (15)0.9348 (8)0.2832 (15)0.0298 (18)0.60
H15A0.90360.92990.32810.036*0.60
C16A0.7063 (14)0.8747 (8)0.3191 (11)0.034 (2)0.60
O17A0.5884 (19)0.8780 (12)0.2670 (11)0.039 (2)0.60
O18A0.7847 (3)0.80918 (19)0.3703 (3)0.0288 (6)0.60
C19A0.6961 (4)0.7395 (3)0.4008 (5)0.0297 (8)0.60
H19A0.62030.72870.31910.036*0.60
C20A0.6332 (6)0.7639 (4)0.5229 (6)0.0466 (13)0.60
H20A0.70780.77620.60190.070*0.60
H20B0.57590.71660.54620.070*0.60
H20C0.57470.81490.50050.070*0.60
C21A0.7913 (5)0.6619 (3)0.4267 (7)0.0431 (12)0.60
H21A0.83680.65300.34730.065*0.60
H21B0.73600.61130.43980.065*0.60
H21C0.86240.67150.50980.065*0.60
N15B0.797 (2)0.9282 (13)0.289 (2)0.032 (3)0.40
H15B0.86830.93030.35820.038*0.40
C16B0.7224 (19)0.8744 (13)0.2867 (15)0.024 (2)0.40
O17B0.595 (3)0.8684 (18)0.2333 (18)0.039 (3)0.40
O18B0.7611 (6)0.8251 (3)0.4349 (6)0.0426 (12)0.40
C19B0.6752 (9)0.7564 (6)0.4736 (12)0.052 (2)0.40
H19B0.57540.76880.43740.062*0.40
H19C0.68870.75260.57550.062*0.40
C20B0.7132 (13)0.6753 (6)0.4178 (12)0.078 (3)0.40
H20D0.69560.67840.31670.117*0.40
H20E0.65700.62920.44690.117*0.40
H20F0.81240.66380.45220.117*0.40

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe0.02407 (16)0.03112 (17)0.02215 (17)0.00247 (11)−0.00153 (11)−0.00056 (11)
C10.0310 (10)0.0354 (11)0.0288 (11)0.0068 (8)0.0026 (9)−0.0032 (8)
C20.0463 (13)0.0294 (10)0.0315 (12)0.0075 (9)−0.0005 (10)−0.0002 (9)
C30.0430 (12)0.0326 (11)0.0338 (12)−0.0065 (9)0.0012 (10)0.0016 (9)
C40.0280 (10)0.0373 (11)0.0286 (11)−0.0048 (8)−0.0024 (8)−0.0038 (9)
C50.0295 (10)0.0305 (9)0.0222 (10)0.0007 (8)−0.0008 (8)−0.0044 (8)
C60.0258 (10)0.0331 (10)0.0229 (10)0.0007 (8)−0.0004 (8)−0.0056 (8)
O70.0279 (8)0.0424 (9)0.0335 (9)0.0016 (6)−0.0052 (6)0.0066 (7)
O80.0255 (7)0.0429 (8)0.0287 (8)−0.0008 (6)0.0008 (6)0.0046 (6)
C90.0379 (12)0.0491 (13)0.0325 (12)−0.0051 (10)0.0045 (10)0.0053 (10)
C100.0332 (11)0.0426 (12)0.0324 (12)0.0082 (9)0.0042 (9)−0.0071 (9)
C110.0418 (13)0.0499 (13)0.0255 (11)0.0050 (10)0.0066 (9)−0.0041 (9)
C120.0390 (12)0.0428 (12)0.0228 (10)0.0048 (9)−0.0074 (9)−0.0022 (9)
C130.0283 (10)0.0349 (11)0.0298 (11)0.0012 (8)−0.0072 (8)−0.0048 (9)
C140.0284 (10)0.0302 (10)0.0291 (11)0.0031 (8)−0.0068 (9)−0.0061 (8)
N15A0.022 (4)0.027 (2)0.036 (3)−0.010 (2)−0.005 (3)−0.003 (2)
C16A0.033 (4)0.027 (2)0.040 (6)−0.004 (2)−0.004 (3)0.003 (3)
O17A0.027 (2)0.045 (4)0.040 (5)−0.002 (2)−0.011 (4)0.000 (4)
O18A0.0233 (13)0.0283 (14)0.0325 (17)−0.0025 (10)−0.0009 (13)0.0076 (13)
C19A0.032 (2)0.028 (2)0.027 (2)−0.0064 (14)0.0018 (17)0.0043 (16)
C20A0.044 (3)0.056 (3)0.044 (3)−0.010 (2)0.021 (2)0.000 (2)
C21A0.040 (2)0.031 (2)0.055 (3)0.0009 (19)0.000 (2)0.0122 (19)
N15B0.013 (5)0.030 (5)0.047 (5)0.004 (3)−0.012 (3)0.008 (4)
C16B0.017 (4)0.037 (4)0.017 (5)0.002 (3)0.001 (3)0.006 (3)
O17B0.031 (4)0.048 (6)0.032 (7)−0.006 (3)−0.008 (5)−0.002 (5)
O18B0.038 (3)0.038 (3)0.045 (3)−0.007 (2)−0.009 (2)0.014 (2)
C19B0.045 (5)0.054 (5)0.057 (7)−0.010 (4)0.012 (4)0.023 (4)
C20B0.115 (9)0.047 (5)0.069 (6)−0.020 (6)0.011 (7)0.004 (4)

Geometric parameters (Å, °)

Fe—C52.033 (2)C12—C131.429 (3)
Fe—C12.037 (2)C12—H12A1.0000
Fe—C112.042 (2)C13—C141.431 (3)
Fe—C122.043 (2)C13—H13A1.0000
Fe—C42.045 (2)C14—N15A1.358 (13)
Fe—C102.054 (2)C14—N15B1.467 (18)
Fe—C32.055 (2)N15A—C16A1.522 (17)
Fe—C22.055 (2)N15A—H15A0.8800
Fe—C132.057 (2)C16A—O17A1.17 (2)
Fe—C142.064 (2)C16A—O18A1.320 (14)
C1—C21.415 (3)O18A—C19A1.455 (5)
C1—C51.439 (3)C19A—C20A1.500 (6)
C1—H1A1.0000C19A—C21A1.518 (6)
C2—C31.425 (3)C19A—H19A1.0000
C2—H2A1.0000C20A—H20A0.9800
C3—C41.425 (3)C20A—H20B0.9800
C3—H3A1.0000C20A—H20C0.9800
C4—C51.426 (3)C21A—H21A0.9800
C4—H4A1.0000C21A—H21B0.9800
C5—C61.463 (3)C21A—H21C0.9800
C6—O71.211 (2)N15B—C16B1.11 (3)
C6—O81.340 (2)N15B—H15B0.8800
O8—C91.446 (3)C16B—O17B1.26 (3)
C9—H9A0.9800C16B—O18B1.632 (16)
C9—H9B0.9800O18B—C19B1.455 (9)
C9—H9C0.9800C19B—C20B1.457 (15)
C10—C111.425 (3)C19B—H19B0.9900
C10—C141.425 (3)C19B—H19C0.9900
C10—H10A1.0000C20B—H20D0.9800
C11—C121.421 (3)C20B—H20E0.9800
C11—H11A1.0000C20B—H20F0.9800
C5—Fe—C141.42 (8)O7—C6—O8122.3 (2)
C5—Fe—C11162.38 (9)O7—C6—C5125.03 (19)
C1—Fe—C11154.35 (9)O8—C6—C5112.62 (17)
C5—Fe—C12155.67 (10)C6—O8—C9115.33 (17)
C1—Fe—C12120.25 (9)O8—C9—H9A109.5
C11—Fe—C1240.72 (10)O8—C9—H9B109.5
C5—Fe—C440.93 (9)H9A—C9—H9B109.5
C1—Fe—C469.25 (9)O8—C9—H9C109.5
C11—Fe—C4124.55 (10)H9A—C9—H9C109.5
C12—Fe—C4162.28 (10)H9B—C9—H9C109.5
C5—Fe—C10125.42 (9)C11—C10—C14107.5 (2)
C1—Fe—C10163.99 (9)C11—C10—Fe69.20 (13)
C11—Fe—C1040.71 (9)C14—C10—Fe70.10 (12)
C12—Fe—C1068.51 (9)C11—C10—H10A126.2
C4—Fe—C10106.41 (9)C14—C10—H10A126.2
C5—Fe—C368.50 (9)Fe—C10—H10A126.2
C1—Fe—C368.52 (10)C12—C11—C10108.2 (2)
C11—Fe—C3106.72 (10)C12—C11—Fe69.68 (13)
C12—Fe—C3125.58 (10)C10—C11—Fe70.09 (13)
C4—Fe—C340.69 (9)C12—C11—H11A125.9
C10—Fe—C3118.89 (10)C10—C11—H11A125.9
C5—Fe—C268.59 (9)Fe—C11—H11A125.9
C1—Fe—C240.46 (9)C11—C12—C13108.5 (2)
C11—Fe—C2119.57 (10)C11—C12—Fe69.60 (13)
C12—Fe—C2108.02 (9)C13—C12—Fe70.12 (12)
C4—Fe—C268.59 (9)C11—C12—H12A125.8
C10—Fe—C2153.80 (10)C13—C12—H12A125.8
C3—Fe—C240.57 (9)Fe—C12—H12A125.8
C5—Fe—C13120.63 (9)C12—C13—C14107.0 (2)
C1—Fe—C13108.29 (9)C12—C13—Fe69.08 (12)
C11—Fe—C1368.71 (10)C14—C13—Fe69.93 (12)
C12—Fe—C1340.80 (9)C12—C13—H13A126.5
C4—Fe—C13154.95 (9)C14—C13—H13A126.5
C10—Fe—C1368.74 (9)Fe—C13—H13A126.5
C3—Fe—C13163.45 (9)N15A—C14—C10119.6 (6)
C2—Fe—C13126.64 (9)N15A—C14—C13131.7 (6)
C5—Fe—C14108.30 (9)C10—C14—C13108.7 (2)
C1—Fe—C14127.19 (9)C10—C14—N15B128.0 (8)
C11—Fe—C1468.11 (10)C13—C14—N15B123.3 (8)
C12—Fe—C1468.11 (9)N15A—C14—Fe128.0 (6)
C4—Fe—C14119.81 (9)C10—C14—Fe69.39 (12)
C10—Fe—C1440.51 (9)C13—C14—Fe69.43 (12)
C3—Fe—C14154.02 (9)N15B—C14—Fe129.3 (10)
C2—Fe—C14164.38 (9)C14—N15A—C16A122.2 (11)
C13—Fe—C1440.65 (8)C14—N15A—H15A118.9
C2—C1—C5107.62 (19)C16A—N15A—H15A118.9
C2—C1—Fe70.47 (13)O17A—C16A—O18A130.7 (14)
C5—C1—Fe69.14 (12)O17A—C16A—N15A123.6 (14)
C2—C1—H1A126.2O18A—C16A—N15A100.6 (10)
C5—C1—H1A126.2C16A—O18A—C19A109.7 (6)
Fe—C1—H1A126.2O18A—C19A—C20A108.9 (4)
C1—C2—C3108.39 (19)O18A—C19A—C21A105.3 (4)
C1—C2—Fe69.07 (12)C20A—C19A—C21A113.4 (4)
C3—C2—Fe69.68 (12)O18A—C19A—H19A109.7
C1—C2—H2A125.8C20A—C19A—H19A109.7
C3—C2—H2A125.8C21A—C19A—H19A109.7
Fe—C2—H2A125.8C16B—N15B—C14125.1 (19)
C2—C3—C4108.3 (2)C16B—N15B—H15B117.5
C2—C3—Fe69.74 (12)C14—N15B—H15B117.5
C4—C3—Fe69.29 (12)N15B—C16B—O17B131 (2)
C2—C3—H3A125.8N15B—C16B—O18B107.6 (17)
C4—C3—H3A125.8O17B—C16B—O18B112.6 (15)
Fe—C3—H3A125.8C19B—O18B—C16B122.3 (9)
C3—C4—C5107.58 (19)O18B—C19B—C20B110.0 (9)
C3—C4—Fe70.02 (13)O18B—C19B—H19B109.7
C5—C4—Fe69.08 (12)C20B—C19B—H19B109.7
C3—C4—H4A126.2O18B—C19B—H19C109.7
C5—C4—H4A126.2C20B—C19B—H19C109.7
Fe—C4—H4A126.2H19B—C19B—H19C108.2
C4—C5—C1108.09 (19)C19B—C20B—H20D109.5
C4—C5—C6124.89 (19)C19B—C20B—H20E109.5
C1—C5—C6126.95 (19)H20D—C20B—H20E109.5
C4—C5—Fe69.99 (12)C19B—C20B—H20F109.5
C1—C5—Fe69.44 (12)H20D—C20B—H20F109.5
C6—C5—Fe123.90 (14)H20E—C20B—H20F109.5
C5—Fe—C1—C2118.61 (18)C4—Fe—C10—C14116.94 (13)
C11—Fe—C1—C2−46.8 (3)C3—Fe—C10—C14159.18 (12)
C12—Fe—C1—C2−82.43 (16)C2—Fe—C10—C14−168.33 (18)
C4—Fe—C1—C280.95 (14)C13—Fe—C10—C14−37.06 (13)
C10—Fe—C1—C2157.9 (3)C14—C10—C11—C120.4 (3)
C3—Fe—C1—C237.20 (13)Fe—C10—C11—C12−59.44 (16)
C13—Fe—C1—C2−125.52 (14)C14—C10—C11—Fe59.87 (15)
C14—Fe—C1—C2−166.73 (13)C5—Fe—C11—C12163.0 (3)
C11—Fe—C1—C5−165.4 (2)C1—Fe—C11—C12−50.5 (3)
C12—Fe—C1—C5158.97 (13)C4—Fe—C11—C12−166.63 (13)
C4—Fe—C1—C5−37.65 (12)C10—Fe—C11—C12119.3 (2)
C10—Fe—C1—C539.3 (4)C3—Fe—C11—C12−125.60 (15)
C3—Fe—C1—C5−81.41 (14)C2—Fe—C11—C12−83.45 (16)
C2—Fe—C1—C5−118.61 (18)C13—Fe—C11—C1237.56 (13)
C13—Fe—C1—C5115.87 (13)C14—Fe—C11—C1281.42 (15)
C14—Fe—C1—C574.67 (15)C5—Fe—C11—C1043.7 (4)
C5—C1—C2—C30.7 (2)C1—Fe—C11—C10−169.82 (19)
Fe—C1—C2—C3−58.74 (16)C12—Fe—C11—C10−119.3 (2)
C5—C1—C2—Fe59.40 (14)C4—Fe—C11—C1074.08 (17)
C5—Fe—C2—C1−38.60 (13)C3—Fe—C11—C10115.10 (15)
C11—Fe—C2—C1158.74 (13)C2—Fe—C11—C10157.25 (14)
C12—Fe—C2—C1115.77 (14)C13—Fe—C11—C10−81.73 (15)
C4—Fe—C2—C1−82.72 (14)C14—Fe—C11—C10−37.87 (14)
C10—Fe—C2—C1−166.43 (19)C10—C11—C12—C130.2 (3)
C3—Fe—C2—C1−120.12 (19)Fe—C11—C12—C13−59.54 (16)
C13—Fe—C2—C174.38 (16)C10—C11—C12—Fe59.71 (16)
C14—Fe—C2—C142.8 (4)C5—Fe—C12—C11−167.56 (19)
C5—Fe—C2—C381.52 (14)C1—Fe—C12—C11157.25 (14)
C1—Fe—C2—C3120.12 (19)C4—Fe—C12—C1138.7 (4)
C11—Fe—C2—C3−81.14 (16)C10—Fe—C12—C11−37.68 (14)
C12—Fe—C2—C3−124.11 (14)C3—Fe—C12—C1173.22 (17)
C4—Fe—C2—C337.40 (14)C2—Fe—C12—C11114.68 (15)
C10—Fe—C2—C3−46.3 (3)C13—Fe—C12—C11−119.62 (19)
C13—Fe—C2—C3−165.50 (14)C14—Fe—C12—C11−81.43 (15)
C14—Fe—C2—C3162.9 (3)C5—Fe—C12—C13−47.9 (3)
C1—C2—C3—C4−0.4 (3)C1—Fe—C12—C13−83.13 (15)
Fe—C2—C3—C4−58.72 (15)C11—Fe—C12—C13119.62 (19)
C1—C2—C3—Fe58.36 (15)C4—Fe—C12—C13158.4 (3)
C5—Fe—C3—C2−81.77 (15)C10—Fe—C12—C1381.94 (14)
C1—Fe—C3—C2−37.10 (14)C3—Fe—C12—C13−167.16 (13)
C11—Fe—C3—C2116.20 (15)C2—Fe—C12—C13−125.70 (14)
C12—Fe—C3—C275.49 (17)C14—Fe—C12—C1338.19 (13)
C4—Fe—C3—C2−119.8 (2)C11—C12—C13—C14−0.7 (2)
C10—Fe—C3—C2158.62 (14)Fe—C12—C13—C14−59.91 (15)
C13—Fe—C3—C244.9 (4)C11—C12—C13—Fe59.22 (16)
C14—Fe—C3—C2−169.58 (19)C5—Fe—C13—C12159.17 (13)
C5—Fe—C3—C438.06 (13)C1—Fe—C13—C12115.40 (14)
C1—Fe—C3—C482.74 (14)C11—Fe—C13—C12−37.49 (14)
C11—Fe—C3—C4−123.97 (14)C4—Fe—C13—C12−164.6 (2)
C12—Fe—C3—C4−164.67 (13)C10—Fe—C13—C12−81.33 (15)
C10—Fe—C3—C4−81.55 (16)C3—Fe—C13—C1239.4 (4)
C2—Fe—C3—C4119.8 (2)C2—Fe—C13—C1274.24 (17)
C13—Fe—C3—C4164.7 (3)C14—Fe—C13—C12−118.27 (19)
C14—Fe—C3—C4−49.7 (3)C5—Fe—C13—C14−82.56 (15)
C2—C3—C4—C5−0.1 (2)C1—Fe—C13—C14−126.33 (14)
Fe—C3—C4—C5−59.08 (14)C11—Fe—C13—C1480.78 (15)
C2—C3—C4—Fe59.00 (15)C12—Fe—C13—C14118.27 (19)
C5—Fe—C4—C3−118.89 (19)C4—Fe—C13—C14−46.4 (3)
C1—Fe—C4—C3−80.80 (15)C10—Fe—C13—C1436.94 (14)
C11—Fe—C4—C374.64 (17)C3—Fe—C13—C14157.6 (3)
C12—Fe—C4—C344.9 (3)C2—Fe—C13—C14−167.49 (13)
C10—Fe—C4—C3115.47 (15)C11—C10—C14—N15A177.8 (7)
C2—Fe—C4—C3−37.30 (14)Fe—C10—C14—N15A−122.9 (7)
C13—Fe—C4—C3−169.8 (2)C11—C10—C14—C13−0.9 (2)
C14—Fe—C4—C3157.33 (14)Fe—C10—C14—C1358.44 (15)
C1—Fe—C4—C538.09 (12)C11—C10—C14—N15B176.4 (12)
C11—Fe—C4—C5−166.47 (13)Fe—C10—C14—N15B−124.3 (13)
C12—Fe—C4—C5163.8 (3)C11—C10—C14—Fe−59.30 (15)
C10—Fe—C4—C5−125.64 (13)C12—C13—C14—N15A−177.5 (9)
C3—Fe—C4—C5118.89 (19)Fe—C13—C14—N15A123.2 (9)
C2—Fe—C4—C581.58 (14)C12—C13—C14—C100.9 (2)
C13—Fe—C4—C5−50.9 (3)Fe—C13—C14—C10−58.42 (15)
C14—Fe—C4—C5−83.78 (14)C12—C13—C14—N15B−176.4 (12)
C3—C4—C5—C10.5 (2)Fe—C13—C14—N15B124.2 (12)
Fe—C4—C5—C1−59.19 (14)C12—C13—C14—Fe59.37 (15)
C3—C4—C5—C6177.69 (19)C5—Fe—C14—N15A−11.5 (8)
Fe—C4—C5—C6118.0 (2)C1—Fe—C14—N15A−53.7 (8)
C3—C4—C5—Fe59.68 (15)C11—Fe—C14—N15A150.1 (8)
C2—C1—C5—C4−0.7 (2)C12—Fe—C14—N15A−165.8 (8)
Fe—C1—C5—C459.53 (15)C4—Fe—C14—N15A31.8 (8)
C2—C1—C5—C6−177.8 (2)C10—Fe—C14—N15A112.1 (8)
Fe—C1—C5—C6−117.6 (2)C3—Fe—C14—N15A66.8 (8)
C2—C1—C5—Fe−60.24 (15)C2—Fe—C14—N15A−87.3 (8)
C1—Fe—C5—C4−119.31 (18)C13—Fe—C14—N15A−127.5 (8)
C11—Fe—C5—C439.5 (4)C5—Fe—C14—C10−123.56 (14)
C12—Fe—C5—C4−168.1 (2)C1—Fe—C14—C10−165.78 (13)
C10—Fe—C5—C473.07 (16)C11—Fe—C14—C1038.06 (14)
C3—Fe—C5—C4−37.84 (13)C12—Fe—C14—C1082.10 (15)
C2—Fe—C5—C4−81.59 (14)C4—Fe—C14—C10−80.25 (15)
C13—Fe—C5—C4157.56 (12)C3—Fe—C14—C10−45.3 (3)
C14—Fe—C5—C4114.70 (13)C2—Fe—C14—C10160.6 (3)
C11—Fe—C5—C1158.8 (3)C13—Fe—C14—C10120.42 (19)
C12—Fe—C5—C1−48.8 (3)C5—Fe—C14—C13116.01 (14)
C4—Fe—C5—C1119.31 (18)C1—Fe—C14—C1373.79 (16)
C10—Fe—C5—C1−167.61 (13)C11—Fe—C14—C13−82.37 (15)
C3—Fe—C5—C181.47 (14)C12—Fe—C14—C13−38.33 (14)
C2—Fe—C5—C137.73 (13)C4—Fe—C14—C13159.33 (13)
C13—Fe—C5—C1−83.12 (14)C10—Fe—C14—C13−120.42 (19)
C14—Fe—C5—C1−125.99 (13)C3—Fe—C14—C13−165.7 (2)
C1—Fe—C5—C6121.4 (2)C2—Fe—C14—C1340.2 (4)
C11—Fe—C5—C6−79.7 (4)C5—Fe—C14—N15B−0.8 (10)
C12—Fe—C5—C672.6 (3)C1—Fe—C14—N15B−43.0 (10)
C4—Fe—C5—C6−119.3 (2)C11—Fe—C14—N15B160.8 (10)
C10—Fe—C5—C6−46.2 (2)C12—Fe—C14—N15B−155.1 (10)
C3—Fe—C5—C6−157.1 (2)C4—Fe—C14—N15B42.5 (10)
C2—Fe—C5—C6159.2 (2)C10—Fe—C14—N15B122.8 (10)
C13—Fe—C5—C638.3 (2)C3—Fe—C14—N15B77.5 (10)
C14—Fe—C5—C6−4.56 (19)C2—Fe—C14—N15B−76.6 (11)
C4—C5—C6—O78.7 (3)C13—Fe—C14—N15B−116.8 (10)
C1—C5—C6—O7−174.7 (2)C10—C14—N15A—C16A−163.1 (9)
Fe—C5—C6—O796.7 (2)C13—C14—N15A—C16A15.1 (18)
C4—C5—C6—O8−172.83 (19)N15B—C14—N15A—C16A9(10)
C1—C5—C6—O83.8 (3)Fe—C14—N15A—C16A110.8 (11)
Fe—C5—C6—O8−84.8 (2)C14—N15A—C16A—O17A−2(2)
O7—C6—O8—C91.7 (3)C14—N15A—C16A—O18A155.1 (11)
C5—C6—O8—C9−176.83 (18)O17A—C16A—O18A—C19A−20.4 (14)
C5—Fe—C10—C11−165.14 (14)N15A—C16A—O18A—C19A−174.9 (7)
C1—Fe—C10—C11163.9 (3)C16A—O18A—C19A—C20A−70.8 (7)
C12—Fe—C10—C1137.69 (15)C16A—O18A—C19A—C21A167.3 (6)
C4—Fe—C10—C11−124.34 (15)N15A—C14—N15B—C16B−149 (13)
C3—Fe—C10—C11−82.10 (16)C10—C14—N15B—C16B−140.6 (19)
C2—Fe—C10—C11−49.6 (3)C13—C14—N15B—C16B36 (3)
C13—Fe—C10—C1181.65 (15)Fe—C14—N15B—C16B126 (2)
C14—Fe—C10—C11118.7 (2)C14—N15B—C16B—O17B−27 (4)
C5—Fe—C10—C1476.14 (15)C14—N15B—C16B—O18B−170.7 (18)
C1—Fe—C10—C1445.2 (4)N15B—C16B—O18B—C19B173.6 (16)
C11—Fe—C10—C14−118.7 (2)O17B—C16B—O18B—C19B22 (2)
C12—Fe—C10—C14−81.02 (14)C16B—O18B—C19B—C20B84.4 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N15A—H15A···O7i0.881.932.793 (14)168
N15B—H15B···O7i0.882.212.962 (19)143

Symmetry codes: (i) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2117).

References

  • Barišić, L., Rapić, V. & Kovać, V. (2002). Croat. Chem. Acta, 75, 199-210.
  • Barišić, L., Rapić, V. & Metzler-Nolte, N. (2006). Eur. J. Inorg. Chem.20, 4019–4021.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326, New York: Academic Press.
  • Pavlović, G., Barišić, L., Rapić, V. & Kovač, V. (2003). Acta Cryst. C59, m55–m57. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography